
Project 1: Breaking the unbreakable Code
The middle ages made great progress in many human arts, not excluding the art of
cryptography. One of the breakthroughs was an improvement on the Caesar cipher, that was
made popular by Vigenère as the “unbreakable code”.

Caesar’s Cipher

We first take a look at Caesar’s code and how to program it in Python. As is traditional, we
convert each text into one containing only capital letters. The Caesar cipher uses as a secret a
single letter. It conceptually then places two copies of the alphabet over each other, where the
“A” is arranged over the secret letter. If the secret letter is N, then

This table defines the encoding. The letters in the cleartext are then substituted by the letters
of which they are placed. For example, “GAULASAWHOLEISDIVIDEDINTOTHREEPARTS”
becomes “TNHYNFNJUBYRVFQVIVQRQVAGBGUERRCNEGF”.

There are many ways in which we can implement this transition. One possibility is to use the
encoding of ASCII letters. As we have learned, there exist encodings for letters. In Python, we
can use the function ord, that gives the encoding for a letter as a decimal integer. Here is the
encoding of the capital letters.

The reverse function is chr. You can see this in action with a simple for loop.

If we want to encode the preceding table, we take the difference between the encoding of a
letter and the encoding of ‘A’. For example, if the letter is ‘J’, then we obtain ord(’J’)-
ord(‘A’)=9. This just means that ‘J’ is the ninth letter of the alphabet. We add the
difference to the code of the key: ord(‘J’) - ord(‘A’)+ord(’N’) = 87, which is the
encoding of the cipher for ‘J’, namely ‘W’. Unfortunately, we need to be careful about going
beyond ‘Z’. If we want to encode ’T’, the same calculation yields

ord(’T’) - ord(‘A’) + ord(’N’) = 84-65+78 = 97.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

for letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
 print(letter, ord(letter))

for num in range(65,91):
 print(num, chr(num))

What we need to do is to subtract 26 to obtain 71, which is the encoding of the correct letter
‘G’. We can algebraically express this by subtracting ord(‘A’), taking the remainder modulo 26,
and then add ord(‘A’) to it. This gives us the transformation function:

In this implementation, I chose to make the constants global variables so that they do not need
to be recalculated every time.

The Vigenère Cipher
The Vigenère cipher consists of several Caesar ciphers where neighboring letters are encoded
using different secret letters. The Vigenère cipher uses a secret word or phrase. As an example,
we use the phrase “LOYOLACHICAGO”. Then the first letter of the cleartext is encoded using
“L”, the second with “O”, the third with “Y”, etc. When we reach the end of the secret phrase,
we start over again.

Attacks against Caesar’s Cipher
Breaking Caesar’s cipher is trivial. Since there are only 26 secrets, we can just try out all
possibilities and select the one that yields a readable text. Alternatively, we can do a frequency
count, since the most frequent letter in English text is ‘E’. In fact, a frequency analysis will give
us a good idea about the language in which the message was written. For example, in
Spanish, the number of ‘E’s and ‘A’s are almost the same, whereas in English, the most
frequent letter is 25% more frequent than the next frequent letter. If we have decided that the
most frequent letter in the cipher text is — let’s say ‘V’, then we know that

ord(‘V’) = (ord(secret)-ord(‘A’)+ord(‘E’)-ord(‘A’))%26+ord(‘A’)

so that the secret letter is ‘R’.

Attacks against the Vigenère Cipher
The weakness of the Vigenère cipher is the small size of the secret. Our example secret has
only 13 letters. This means that every 13th letter is encoded with the same letter. In fact, three
of every 13 letters are encoded with secret “O”. Since the frequency of letters in any actual
language is far from uniformly distributed, this observation is the key to breaking the code.

If the length of the secret is n then every n-th letter is encoded with the same letter and hence
the chances that a letter in the cipher text is equal to the letter in the cipher removed by n is
higher than for all other displacements.

global_offset = ord('A')
global_length = ord(‘Z')-ord('A')+1

def change(letter, pwd):
 return chr((ord(letter)+ord(pwd)-2*global_offset)%global_length+global_offset)

def unchange(letter, pwd):
 return chr((ord(letter)-ord(pwd)+global_length)%global_length + global_offset)

As an example, I encrypted the cleartext with this secret, and then counted the number of
times that a letter in the resulting cipher text was equal to the letter at distance n for various
distances n. The following table shows the result.

4 17057

5 16572

6 16400

7 16857

8 16270

9 17232

10 16658

11 18083

12 15123

13 28411

14 15143

15 17679

16 16371

17 17346

18 16512

19 16385

20 16183

21 16713

22 17486

23 16443

24 17958

25 15049

26 28522

27 15140

28 17711

29 16563

30 17474

As you can see see, there is a jump at 13 and another one at 26 with a number of coincidences
almost twice as large as for the other displacements. This allows us to find the length of the
secret phrase. Of course, encrypting with “LOYOLACHICAGO” has the same effect as
encrypting with “LOYOLACHICAGOLOYOLACHICAGO”, so there is a noticeable jump in the
number of coincidences for all multiples of the secret length as well.

Once we know the length of the secret to be 13, we know that every 13th letter are encrypted
with the same letter. Thus, letter 0, letter 13, letter 26, … are all encrypted with the same letter. I
collect the letters 0, 13, 26, 39, … in the cipher and determine which one is the most frequent
one. This turns out to be ‘P’. Now, since the most frequent letter in English is “E”, we know
that “E” is encrypted by “P”. This means that “D” is encrypted with “O”, “C” with “N”, “B” with
“M”, and “A” with “L”. I thus recovered successfully the first letter of the secret. For the second
letter, I look at the letters 1, 14, 27, 40, … of the cipher. The most frequent letter is “S”, and
since “E” goes to “S”, “A” has to go to “O”. Applying this method a total of 13 times, the secret
is successfully recovered and the cipher can now be decoded.

We have broken the “unbreakable code”.

Description of the Code
You will find in the adjacent program several functions. The function clean changes a text file
to one where all letters are changed to capital letters and all punctuation marks, digits, and
white spaces are removed. The result is a file with a single line in it. The functions cipher and

decipher encrypt and decrypt using a Vigenère cipher. You will need to write the functions
displacement and find.

Deliverables
Decrypt the file cipher.txt by determining the secret phrase. You should submit on paper
the code to obtain the secret phrase, the secret itself, a description of the plaintext, and the
Python functions used to obtain the secret. You can work in groups of up to three people.

