More on String and
File Processing

Marguette University

Problems with Line Endings

® ASCII code was developed when computers wrote to teleprinters.

® A new line consisted of a carriage return followed or preceded by a
line-feed.

® UNIX and windows choose to different encodings
® Unix has just the newline character “\n”
® \Nindows has the carriage return: “\r\n”
® By default, Python operates in “universal newline mode”
® All common newline combinations are understood
® Python writes new lines just with a “\n”

® You could disable this mechanism by opening a file with the universal
newline mode disabled by saying:

¢ open(“filename.txt”, newline='")

Encodings

® |nhformation technology has developed a large
number of ways of storing particular data

® Here Is some background

Worktes - oot Secter NTF il

R

e I8 Sesnth Nevgetwn View Tooh Sgecuimt Optiern Window el
FUldad RABD A2 XN * 9
r Y .

Using a forensics tool (Winhex) in order
to reveal the bytes actually stored

ENcodings

* Teleprinters

* Used to send printed messages

* Can be done through a single
ine

* Use timing to synchronize up
and down values

ENcodings

» Serial connection:
e Voltage level during an interval indicates a bit

e Digital means that changes in voltage level can
tolerated without information loss

voltage
A

be

fTo0oo017T170171T71T7T 0000170707100

time

ENcodings

e Parallel Connection

e Can send more than one bit at a time

* Sometimes, one line sends a timing signal

* Sending
* 1000
* 0100
* 1100
* 0100

e Small errors in timing and
voltage are repaired
automatically

. |

[time
1T0 1010171017010 17017T017071°O0°1

voltage line O

i |

[time
1010001117001 10110071711

voltage line 1

1 000 noc

[time
o1 1110001707170 17T017T1700T1OQ01

voltage

|

| time
O0071T0000171T000O0017T0O00O0T1O0

line 2

voltage line 3

|

| time
oooot1r1111T0000017T1T 1171700

ENcodings

* Need a code to transmit letters and control signals
 Emile Baudot's code 1870
* 5 bit code

* Machine had 5 keys, two for the left and three
for the right hand

* Encodes capital letters plus NULL and DEL

* Operators had to keep a rhythm to be
understood on the other hand

ENcodings

* Many successors to Baudot's code
 Murray’s code (1901) for keyboard

 [ntroduced control characters such as
Carriage Return (CR) and Line Feed (LF)

* Used by Western Union until 1950

ENcodings

 Computers and punch cards
 Needed an encoding for strings
« EBCDIC — 1963 for punch cards by IBM
* 8b code

ENcodings

o ASCII — American Standard Code for Information Interchange —
1963

e 8b code

« Developed by American Standard Association, which
became American National Standards Institute (ANSI)

e 32 control characters

91 alphanumerical and symbol characters

 Used only 7b to encode them to allow local variants
o Extended ASCII

e Uses full 8b

* Chooses letters for Western languages

ENcodings

e Unicode - 1991

* “Universal code” capable of implementing text in
all relevant languages

e 32b-code

* For compression, uses “language planes”

ENcodings

e UTF-7 — 1998
* /b-code
* |nvented to send email more efficiently
 Compatible with basic ASCI!

e Not used because of awkwardness Iin
translating 7b pieces in 8b computer
architecture

ENcodings

UTF-8 — Unicode

e Code that uses
e 8b for the first 128 characters (basically ASCI|)
* 16b for the next 1920 characters

e Latin alphabets, Cyrillic, Coptic, Armenian, Hebrew,
Arabic, Syriac, Thaana, N'Ko

e 24p for
e Chinese, Japanese, Koreans
e 32D for

* Everything else

IEEE 754 Standard for Floating Point

* Double precision format

|
g |E: Biase Z
e | EXxponent | Significand 20 bits
| 11 bits
Bit index 31 30 2019 0
Significand continued 32 bits

e Numbers

* There is a variety of ways of storing numbers
(integers)

* All based on the binary format

* For floating point numbers, the exact format has
a large influence on the accuracy of calculations

* All computers use the IEEE standarad

Python and Encodings

 Python "understands” several hundred encodings
 Most important
e ascii (corresponds to the 7-bit ASCII standard)
- utf-8 (usually your best bet for data from the Web)
- latin-1

- straight-forward interpretation of the 8-bit
extended ASCI|

- never throws a “cannot decode” error

* NO guarantee that it read things the right way

Python and Encodings

It Python tries to read a file and cannot decode, it
throws a decoding exception and terminates
execution

We will learn about exceptions and how to handle
them soon.

For the time being: Write code that tells you where
the problem is (e.g. by using line-numbers) and
then fix the input.

Usually, the presence of decoding errors means
that you read the file in the wrong encoding

Using the os-modaule

* With the os-module, you can obtain greater access to the
file system

* Here is code to get the files in a directory

import os

def list files(dir name):
files = os.listdir(dir name)
for my file in files:
print (my file, os.path.getsize(dir name+"/"+my file))

list files (“Example")

Using the os-module

import os Get a list of file names in the directory

def list files(dir name):
files = os.listdir (dir name)
for my file in files:
print (my file, os.path.getsize(dir name+"/"+my file))

list files (“Example™)

Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file in files:
print (my file, os.path.getsize(dir name+"/"+my file))

list files (“Example™)

Creating the path name

to the file

Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file in files:

print (my file, os.path.getsize(dir name+"/"+my file))

list files (“Example™)

Gives the size of the file

in bytes

Use the os-module

import os

def list files(dir name):
files = os.listdir (dir name)
for my file in files:
print (my file, os.path.getsize(dir name+"/"+my file))

list files (“Example™)

Use the 0s-moaule

* Qutput: RESTART: /Users/thomasschwa
lel4/generator.py

.DS_Store 6148

resultsl.csv 384
results@.csv 528
resultsZ2.csv 432
results3.csv 368
resu}ts4.csv 464

e Note the Mac-trash file

Use the 0s-moaule

* Using the listing capability of the os-module, we
can process all files in a directory

* Jo avoid surprises, we best check the extension

 Assume a function process a file

* QOur function opens a comma-separated (.csv)
file

» Calculates the average of the ratios of the
second over the first entries

Use the 0s-moaule

1.290, 12.495
2.295, 11.706
3.063, 9.083
4.058, 4.112

* The process_a_file takes the STy
2..021, 10.032
' 0.929, 9.373 5, 9.733 29
file-name Ltk i s 1
R A0 19.097 3, 26.547 50
1097, 5833 | 0 950 b, 3usae 1
° | | h 2.781, 10.032 | 37.029 4. 47.130 i/3
a Cu ateS t e average 4.225, 9.733 {37.459 ¥, 50.559 82
e i1o1) 20935 |34 593 & coloe 193
. 151, 20, 591 5, 681175 93
ratio G oss, 53335 | tbis0s 7. 2eiora 50
9.132, 37.54¢6 62.255 4, 93.389 78
10.474, 47.130 84.116 %,103.726 17
11.207,.50.559 87..145..50.,111 §g§ 57
def process a file(file name): 094 2
with open(file name, "r") as infile: 302
suma = 0 =
131
nr_lines = (%
for line in infile: 800
. 109
nr_llnes+=1 78¢
array = line.split (', ")
suma+= float (array[l])/float (array[0])
return suma/nr lines

Use the 0s-moaule

* o process the directory
* (Get the file names using 0s
* For each file name:
* Check whether the file name ends with .csv
* Call the process_a_file function

 Print out the result

Use of the os-module

def process files(dir name) :
files = os.listdir(dir name)

for my file in files:

1f my file.endswith('.csv'):

print (my file,

process a file(
“Example/{}”.format (my file)))

Using format to create the
file name

Use of the os-module

lel4/generator.py

>>> process_files('Example’)
resultsl.csv 5.2819632072675295
results@.csv 5.920382285263983
resultsZ2.csv 5.75068633738946606
results3.csv 4.801235259621119
results4.csv 6.409464135625922

