Comprehension in
Action

Python

Getting the listing of a
directory

e Task: Generate a listing of all files in a directory that end
in “.py!!

e Jool: import the os module and use listdir

[filename for filename 1n os.listdir (directoryname)
1f filename.endswith (".py")]

Creating sub-directories

e Task: We want to create a sub-dictionary of a dictionary
where the keys are restricted by a condition

e Use dictionary comprehension

def evenkeys(dictionary) :
return { i:dictionary([i] for 1 1n dictionary 1f 1%2==0}

Filtering a list

 We want to filter a list using a criterion
1. We can use the filter function
2. We can use list comprehension, which is often simpler

e Example: Only display the positive elements of this large list

>>> rlist

[2ze, -1, 3, o, 17, 1, 20, 19, 24, 4, 21, o, 4, 7, 20, 2, 1, 13, 0, 21, 23, 6, 2,
22, 4, 3, 6, 2, 13, -5, 3, 13, 20, 23, 14, 13, 13, 20, 10, 24, 9, -1, -4, 22, 1
5, 21, 18, -1, 16, 13, 1, 3, 12, 21, @, 9, 4, 24, -3, 4, 10, 8, 1, 19, 3, 20, 4,
5, 25, 8, 8, 14, -5, 23, 24, 14, 1, @0, -5, -3, 3, -4, 11, 1, 8, 17, 2, 2, 23, 6
, 2, 25, 15, 4, 23, 20, 5, -3, 11, 16]

>>> list(filter(lambda x: x>0, rlist))

[2e, 3, 17, 1, 20, 19, 24, 4, 21, 4, 7, 20, 2, 1, 13, 21, 23, 6, 2, 22, 4, 3, 6,
2, 13, 3, 13, 20, 23, 14, 13, 13, 20, 10, 24, 9, 22, 15, 21, 18, 16, 13, 1, 3,
12, 21, 9, 4, 24, 4, 10, 8, 1, 19, 3, 20, 4, 5, 25, 8, 8, 14, 23, 24, 14, 1, 3,
11, 1, 8, 17, 2, 2, 23, 6, 2, 25, 15, 4, 23, 20, 5, 11, 16]

>>> [x for x in rlist if x>0]

[2e, 3, 17, 1, 20, 19, 24, 4, 21, 4, 7, 20, 2, 1, 13, 21, 23, 6, 2, 22, 4, 3, 6,
2, 13, 3, 13, 20, 23, 14, 13, 13, 20, 10, 24, 9, 22, 15, 21, 18, 16, 13, 1, 3,
12, 21, 9, 4, 24, 4, 10, 8, 1, 19, 3, 20, 4, 5, 25, 8, 8, 14, 23, 24, 14, 1, 3,

11, 1, 8, 17, 2, 2, 23, 6, 2, 25, 15, 4, 23, 20, 5, 11, 16]

Mapping a list

e We want to apply a function to all elements in a list

>>> rlist =[random.randint(-10,20) for _ in range(20)]

>>> rlist

[-2, -9, 20, -10, -9, 19, -4, 1, 16, 3, 8, -10, 4, -2, 11, 8, 11, -7, -2, -3]
>>> list(map(laombda x: (x-6)**2, rlist))

[64, 225, 196, 256, 225, 169, 100, 25, 100, 9, 4, 256, 4, 64, 25, 4, 25, 169, 64
, 81]

>>> [(x-6)**2 for x in rlist]

[64, 225, 196, 256, 225, 169, 100, 25, 100, 9, 4, 256, 4, 64, 25, 4, 25, 169, o4
, 81]
oo

ZIp

ZIp

e Often we have related data in a number of lists

e Example: list of student names, list of grades, list of
high school

e [“Frankieboy”, “Violet”, “Kumar”, “Dshenghis”]

:“D”, “A”, “B”, “C”]

:“MPS-I ”, “MH”, “MH”, “MPSSQ”]

e Zipping will create a zip object that generates the
tuples (“Frankieboy”, “D”, “MPS17), (“Violet”,“A”,”MH?),
(“Kumar!!, “B!!, “MH!!), (“DShenghiS”,”C”, “MPS59H)

ZIp

e \We can reach the same effect with list comprehension,
but since we cannot enumerate in parallel through several
iterables, we need to use indices.

>>> names = ["Albertina”, "Bertram", "Chris", "David"]

>>> grades = ["A", "B", "C", "D"]

>>> highschools = ["MH", "SHH", "LGH", "MHT"]

>>> zip(names, grades, highschools)

<zip object at @x1153e8bc8>

>>> list(zip(names, grades, highschools))

[("Albertina', 'A', 'MH'), ('Bertram', 'B', 'SHH'), ('Chris', 'C', 'LGH'), ('David', 'D', 'MHT')]
>>> [(names[i], grades[i], highschools[i]) for 1 in range(len(names))]

[('A}bertina', "A', '"MH'), ('Bertram', 'B', 'SHH'), ('Chris', 'C', 'LGH'), ('David', 'D', 'MHT')]

e What happens if you give zip iterables of different length

e E.g.alistof 5, alist of 4 and a list of 3 elements?

e The result is a zip object of length the minimum of the
lengths.

e Undoing a zip:

e |f youmake alist alist out of a zip object, you can break it
apart with the zip (*alist) command

>>> names = ["Albertina”, "Bertram"”, "Chris", "David"]

>>> grades = ["A", "B", "C", "D"]

>>> highschools = ["MH", "SHH", "MPS57", "LGH"]

>>> alist = list(zip(names, grades, highschools))

>>> alist

[('Albertina', 'A', 'MH'), ('Bertram', 'B', 'SHH'), ('Chris', 'C', 'MPS57'), ('D

avid', 'D', 'LGH')]

>>> list(zip(*alist))

[('Albertina', 'Bertram', 'Chris', 'David'), ('A', 'B', 'C', 'D'), ('MH', 'SHH',
"MPS57', 'LGH')]

>>> names, grades, highschools = tuple(list(zip(*alist)))

>>> names

('Albertina', 'Bertram', 'Chris', 'David')

>>> grades

C'A', "B, 'C", 'D")

>>> highschools

('MH:, "SHH', 'MPS57', 'LGH'")

And now for something
completely different

Copying Data Structures

- Copying and assignment are two different things

Copying Data Structures

- Copying and assignment are two different things
- We have an object a
a = set(l, 2, “one”)
- We assignatob

- But the two objects are still linked:

Copying Data Structures

 Copying and assignment are two different things

a = set([1l, 2, "one"])
print (a)

b = a

print (b)

Now we change set a
a.remove ("one")

Which also changes set b
print (b)

>>>
>>>
i1,
>>>
>>>
>>>
i1,

>>>

i1,

= {1,2,"one"}
'one'}

= a
.remove("one™)

}
}

NO NNO O T NNDO O

Copying Data Structures

+ Copying and assignment are two different things
- Here is what happens

- In Python, names point to objects

E g, ones

+ Assigning adds a name to the same object

E 4 5 2, Tonedl

/

Copying Data Structures

- Copying and assignment are two different things

- Since there is only one object, | can manipulate the
object through either name

E >

m/

<

Copying Data Structures

- Copying and assignment are two different things
- If | want to copy, | need to do so explicitly
lista = [1, 2, "three", [4,5]]

listb = [x for x 1n lista]
listal[2] = 3

>>> lista = El, 2, "three", [4,5]]

print (lista) >>> listb = [x x in lista]
, , >>> lista[2] = 3
print (listb) >>> lista
[1, 2, 3, [4, 5]1]
>>> listb

[1, F, "three', [4, 5]]
- Now changes to one do not change the other!

Copying Data Structures

* Copying and assignment are two different things

* One can use slices to copy lists
. listb = 1lista[0:4]

Copying Data Structures

- Copying becomes difficult if we have compound
objects

- E.qg.: Alist which contains lists, sets, ...
- Shallow copy:

- Resulting copies have shared elements

Copying Data Structures

- Example: A matrix as a list of rows

- Create zero row by multiplying list with an integer

. o, 0, 0, 01,

- which is not entirely false

Copying Data Structures

- We can get the elements as we should

matrix = 3%[4*[0]]
éprint(matrix[B][Z]) |

- But now we see that we got three times the same row

Copying Data Structures

matrix = 3*[4*[0]]
print (matrix)
matrix|[2][3] = b
print (matrix)

RESTART: /Users/tjschwarzs j/Google Drive/AATeaching/Python/Programs/copying.py

[[OI OI OI O]/ [OI OI OI O]I [OI OI OI O]]
[[OI O/ O/ 5]/ [OI OI O/ 5]/ [OI OI OI 5]]

Copying Data Structures

- How can we do this:
- Need to construct the zero rows independently

- Use e.qg. list comprehension

matrix = [[0 for in range(4)] for 1 in range(3)]

Copying Data Structures

- Shallow copy: Assume we have
lista = [1, 2, [3,4,5]]

- We create a shallow copy by

1, 2, [3, 4, S]]

lista |
listal:]

listb

- But here is what is happening

1,2, 3

(1, 2, [3, 4, 5]]
listal:]

lista
listb

The two lists still share a component. We can change this
component in one list and change it in the other one as well.

Copying Data Structures

- We have two copies of the list, but the third element are
two different names for the same object

11,2, 3]

] [1,2, ?\

Copying Data Structures

- |n conseqguence, | can alter the same element in the list
which is element number 2

lista = [1, 2, [3, 4, 5]]
listb = listal:]
listal[2][0] = o

print (lista)
print (listb)

* prints out

Copying Data Structures

- | need to use a deep copy
- Easiest:

- Use the module copy
- Use copy.deepcopy (object) for deep copying

- Use copy.copy (object) for shallow copying

Copying Data Structures

- This Iis a famous Python gotcha

- Behavior is not intuitive.

