
Comprehension in
Action

Python

Getting the listing of a
directory

• Task: Generate a listing of all files in a directory that end
in “.py”

• Tool: import the os module and use listdir

[filename for filename in os.listdir(directoryname)
 if filename.endswith(".py")]

Creating sub-directories
• Task: We want to create a sub-dictionary of a dictionary

where the keys are restricted by a condition

• Use dictionary comprehension

def evenkeys(dictionary):
 return { i:dictionary[i] for i in dictionary if i%2==0}

Filtering a list
• We want to filter a list using a criterion

1. We can use the filter function

2. We can use list comprehension, which is often simpler

• Example: Only display the positive elements of this large list

Mapping a list
• We want to apply a function to all elements in a list

Zip

Zip
• Often we have related data in a number of lists

• Example: list of student names, list of grades, list of
high school

• [“Frankieboy”, “Violet”, “Kumar”, “Dshenghis”]

• [“D”, “A”, “B”, “C”]

• [“MPS1”, “MH”, “MH”, “MPS59”]

• Zipping will create a zip object that generates the
tuples (“Frankieboy”, “D”, “MPS1”), (“Violet”,“A”,”MH”),
(“Kumar”, “B”, “MH”), (“Dshenghis”,”C”, “MPS59”)

Zip
• We can reach the same effect with list comprehension,

but since we cannot enumerate in parallel through several
iterables, we need to use indices.

Zip
• What happens if you give zip iterables of different length

• E.g. a list of 5, a list of 4 and a list of 3 elements?

• The result is a zip object of length the minimum of the
lengths.

Zip
• Undoing a zip:

• If you make a list alist out of a zip object, you can break it
apart with the zip(*alist) command

And now for something
completely different

Copying Data Structures
• Copying and assignment are two different things

Copying Data Structures
• Copying and assignment are two different things

• We have an object a

• We assign a to b

• But the two objects are still linked:

a = set(1, 2, “one”)

Copying Data Structures
• Copying and assignment are two different things

a = set([1, 2, "one"])
print(a)
b = a
print(b)
Now we change set a
a.remove("one")
Which also changes set b
print(b)

Copying Data Structures
• Copying and assignment are two different things

• Here is what happens

• In Python, names point to objects

• Assigning adds a name to the same object

a {1, 2, “one”}

a {1, 2, “one”}

b

Copying Data Structures
• Copying and assignment are two different things

• Since there is only one object, I can manipulate the
object through either name

a {1, 2, “one”}

b

Copying Data Structures
• Copying and assignment are two different things

• If I want to copy, I need to do so explicitly

• Now changes to one do not change the other!

lista = [1, 2, "three", [4,5]]
listb = [x for x in lista]
lista[2] = 3
print(lista)
print(listb)

Copying Data Structures
• Copying and assignment are two different things

• One can use slices to copy lists
• listb = lista[0:4]

Copying Data Structures
• Copying becomes difficult if we have compound

objects

• E.g.: A list which contains lists, sets, …

• Shallow copy:

• Resulting copies have shared elements

Copying Data Structures
• Example: A matrix as a list of rows

• Create zero row by multiplying list with an integer

• One might think it creates a structure like

• which is not entirely false

matrix = 3*[4*[0]]

[[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]]

Copying Data Structures
• We can get the elements as we should

• And we can set elements

• But now we see that we got three times the same row

matrix = 3*[4*[0]]
print(matrix[3][2])

matrix = 3*[4*[0]]
matrix[3][2] = 5

Copying Data Structures
matrix = 3*[4*[0]]
print(matrix)
matrix[2][3] = 5
print(matrix)

 RESTART: /Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/copying.py
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 5], [0, 0, 0, 5], [0, 0, 0, 5]]

Copying Data Structures
• How can we do this:

• Need to construct the zero rows independently

• Use e.g. list comprehension

matrix = [[0 for _ in range(4)] for i in range(3)]

Copying Data Structures
• Shallow copy: Assume we have

• We create a shallow copy by

• But here is what is happening

lista = [1, 2, [3,4,5]]

lista = [1, 2, [3, 4, 5]]
listb = lista[:]

lista

{1, 2, “one”}

listb

[1,2, ?]

[1,2, ?]

lista = [1, 2, [3, 4, 5]]
listb = lista[:]

The two lists still share a component. We can change this
component in one list and change it in the other one as well.

Copying Data Structures
• We have two copies of the list, but the third element are

two different names for the same object

lista

{1, 2, “one”}

listb

[1,2, ?]

[1,2, ?]

lista = [1, 2, [3, 4, 5]]
listb = lista[:]

Copying Data Structures
• In consequence, I can alter the same element in the list

which is element number 2

• prints out

lista = [1, 2, [3, 4, 5]]
listb = lista[:]
lista[2][0] = 6
print(lista)
print(listb)

[1, 2, [6, 4, 5]]
[1, 2, [6, 4, 5]]

Copying Data Structures
• I need to use a deep copy

• Easiest:

• Use the module copy

• Use copy.deepcopy(object) for deep copying

• Use copy.copy(object) for shallow copying

Copying Data Structures

• This is a famous Python gotcha

• Behavior is not intuitive.

