
TkInter: Buttons
Python

Marquette University

Buttons
• Apps have buttons

• You press on them, and something happens

• Implementation in TkInter:

• Create button (usually with text, sometimes with an
image)

• Always linked with an event handler

• Place button

• Create event handler — a callback function

Buttons
• A super-simple example: Create an app

Buttons
• Now create two

buttons:

• Need to give a function
as the command
parameter

• Easiest to define as
class parameters

Buttons
• Callbacks: Our code tells the button Constructor what to

do in the future, namely when the button is pressed

• Small problem: we pass a function without parameters

Buttons
• If we want the button to do something to the app, the

function needs to know how to reach the components

• Solution:

• Create only class fields instead of instance fields

• This way everything is reachable from within function
definitions

class MyApp:
 def __init__(self):
 MyApp.main = tk.Tk()
 MyApp.main.title("Buttons")
 self.create_widgets()
 MyApp.main.mainloop()

Buttons
• Change the background color of the main window

• Uses the configure method and sets the parameter
background

 def callback1():
 print("callback 1 called")
 MyApp.main.configure(background="Red")

Buttons

Buttons
• We can also change the text of a label.

• A polyglot “Hello World” Application

• Main widget is a label with text

• Use width and height to make it big enough

• Number interpreted as text lines

 def create_widgets(self):
 MyApp.label = tk.Label(MyApp.main,

 text="Hello World",
 height = 5,
 width = 75)

 MyApp.label.pack(side="left")

Buttons
• Then create a number of buttons

• Each would need their own callback function

• But that is insane

• Can use the lambda trick in order to call a function
with different parameters

• RECALL: lambda defines an anonymous python
function

• is the same as

• def add(x, y):
 return x+y

lambda x, y: x+y

Buttons
• Define one callback function with an argument

• Define a function derived from that one anonymously

 my_button4 = tk.Button(MyApp.main, text=“Español”,
 command=lambda : MyApp.callback("Hola Mundo"))

 my_button4.pack(side="bottom")
 my_button5 = tk.Button(MyApp.main, text=“Italiano",
 command=lambda : MyApp.callback("Ciao Mondo"))
 my_button5.pack(side="bottom")
 def callback(my_text):
 MyApp.label.configure(text=my_text)

Buttons
• Now we can go overboard and create many buttons

The grid method
• Placing widgets with pack does not give a lot of control

• Much more control wielded by grid

• grid takes two coordinates, row and column

• Distributes widgets into rows and columns

• Can use rowspan or columnspan if a widget needs
to take up more than a single row or column

grid method example
• We expand on the previous example in order to show how

grid works

• The label takes up several rows

• But because it is big, it just defines a single big column

• The buttons are arranged in two columns

• By the way, Python 3 understands UTF, so we can add text
in non-latin alphabets (russian, greek, gujarati, mahrati) as
well as text with diacritic marks

• I use copy and paste to convince the IDLE editor instead
of looking up unicode codes.

