
Last Homework Solutions
Problem 1:
INSERT INTO
locations(location_id,street_address,postal_code,city,state_province,c
ountry_id)
VALUES (3000, '100 Avda Leonardo Da Vinci',NULL,'Punta del
Este','Maldonado','UR');

INSERT INTO departments(department_id, department_name,location_id)
VALUES (12, 'AppDev',3000);

INSERT INTO jobs(job_id,job_title,min_salary,max_salary)
VALUES (20,'CIO',5000.00,10000.00);

INSERT INTO
employees(employee_id,first_name,last_name,email,phone_number,hire_dat
e,job_id,salary,manager_id,department_id)
VALUES
(207,'Leonardo','Lima','Leonardo.Lima@mu.com',NULL,'2024-06-01',20,750
0.00,100,12);

INSERT INTO
employees(employee_id,first_name,last_name,email,phone_number,
hire_date,job_id,salary,manager_id,department_id)
VALUES
(208,'Julio','Tejera','Julio.Tejeraa@mu.com',NULL,'2024-06-01',9,5000.
00,207,12);

INSERT INTO
employees(employee_id,first_name,last_name,email,phone_number,hire_
date,job_id,salary,manager_id,department_id)
VALUES
(209,'Marcos','Robello','Marcos.Robello@mu.com',NULL,'2024-06-01',3,40
00.00,207,12);

Problem 2:
SELECT AVG(salary) AS average
FROM employees JOIN jobs USING(job_id)
WHERE job_title = 'programmer'
GROUP BY job_title;

Problem 3:
SELECT job_title AS 'Title', MAX(salary) AS 'maximum salary'
FROM employees JOIN jobs USING(job_id)
GROUP BY job_title;

Problem 4:
SELECT e.first_name, e.last_name, count
FROM employees e JOIN
 (SELECT employee_id, COUNT(*) AS count FROM
 dependents JOIN employees USING(employee_id)
 GROUP BY employee_id) AS ct
 USING (employee_id)
ORDER BY count DESC
LIMIT 1;

Problem 5:
SELECT
 e.department_id,
 department_name,
 MAX(salary)
FROM
 employees e INNER JOIN departments d USING(department_id)
GROUP BY
 e.department_id
HAVING
 MAX(salary) <= 8000
ORDER BY
 MAX(salary);

Problem 6:
CREATE DEFINER=`root`@`localhost` PROCEDURE `average
salary`(my_department_name VARCHAR(30))
BEGIN
SELECT AVG(e.salary)
FROM employees e JOIN departments d USING (department_id)
WHERE d.department_name = my_department_name

GROUP BY department_id;
END

Problem 7:
CREATE DEFINER=`root`@`localhost` FUNCTION `importance`(manager
VARCHAR(30)) RETURNS int
 READS SQL DATA
BEGIN
DECLARE RETVAL INTEGER;
SELECT SUM(e.salary)
INTO RETVAL
FROM employees e JOIN employees manager ON e.manager_id =
manager.employee_id
WHERE e.last_name = manager
GROUP BY e.employee_id;
RETURN RETVAL;
END

Problem 8:

{A}+ = {A}
{B}+ = {B}
{C}+ = {C}
{D}+ = {D}
{E}+ = {E}
{F}+ = {F, A, B, C, E}

{A, B}+ = {A, B, C, E}
{A, C}+ = {A, C}
{A, D}+ = {A, D}
{A, E}+ = {A, E}
{A, F}+ = {A, F, B, C, E}
{B, C}+ = {B, C}
{B, D}+ = {B, D}
{B, E}+ = {B, E}
{B, F}+ = {B, F, A, E}
{C, D}+ = {C, D, E}
{C, E}+ = {C, E}
{C, F}+ = {C, F, A, B, E}

 key

.

Problem 9:
To be in Boyce-Codd normal form, each FD needs to have a super-key on the right side. Since

, is definitely not a super-key and the first FD violates the Boyce-
Codd condition. We can add to the FD and obtain a new FD , which combines
the first and second original FD. We then apply the decomposition algorithm (Algorithm 3.20) .
Since 	

	 	 ,

we create a new table

	 	

with projected FDs , showing that is a key. This table is in BCNF.

The second relation consists of the left side of the violating FC and the other attributes, i.e.

	 	 .

This relation has no FDs! In fact, the third original FD is no longer reconstructable from
the decomposition. This is nothing unusual, though of course regrettable. As does not have
any more FDs, it is by default in BCNF.

Problem 10:

Since the writes to page are done by transactions 2, 3, and 1 in this order, we try to use
commutativity rules to have first all operations by transaction 2, then by 3, and then by 1.

,

but now we are stuck because we cannot commute with , as transaction 1 reads
the old value of

 reads always commute

	 	 reads always commute

	 	 writes to different pages commute

	 	 writes to different pages commute

 reads and writes to different pages commute

 reads and writes to different pages commute

This is now a serial history, so the original history is serializable.

{D, E}+ = {D, E}
{D, F}+ = {D, F, A, B, C, E}
{E, F}+ = {E, F, A, B, C}

A, B ↛ E {A, B} A, B → C
A, B → C, D

{A, B}+ = {A, B, C, D}

R1(A, B, C, D)
A, B → C, D A, B

R2(A, B, E)
E → D

R2

x

r1(x)r2(x)w2(x)r3(x)w1(y)w3(x)w1(x)
∼ r2(x)r1(x)w2(x)r3(x)w1(y)w3(x)w1(x)

r1(x) w2(x)
x .

r2(z)r1(x)r1(y)w2(z)w1(x)w1(y)w2(x)
∼ r1(x)r2(z)r1(y)w2(z)w1(x)w1(y)w2(x)
∼ r1(x)r1(y)r2(z)w2(z)w1(x)w1(y)w2(x)
∼ r1(x)r1(y)r2(z)w1(x)w2(z)w1(y)w2(x)
∼ r1(x)r1(y)r2(z)w1(x)w1(y)w2(z)w2(x)
∼ r1(x)r1(y)w1(x)r2(z)w1(y)w2(z)w2(x)
∼ r1(x)r1(y)w1(x)w1(y)r2(z)w2(z)w2(x)

