
Midterm 2023 Solutions
Problem 1:

, so AB is a key

, so BC is a key

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

 (superkey)

So, the only keys are AB and BC.

Consider the functional dependencies.

AB C has a key on the right side. BC A and BC D have a key on the rights side.

Boyce-Codd Normal Form: D E is a functional dependency, but D is not a key.

{A}+ = {A}
{B}+ = {B}
{C}+ = {C}
{D}+ = {DE}
{E}+ = {E}
{A, B}+ = {A, B, C, D, E}
{A, C}+ = {A, C}
{A, D}+ = {A, D, E}
{A, E}+ = {A, E}
{B, C}+ = {A, B, C, D, E}
{B, D}+ = {B, D, E}
{B, E}+ = {B, E}
{C, D}+ = {C, D, E}
{C, E}+ = {C, E}
{D, E}+ = {D, E}
{A, B, C}+ = {A, B, C, D, E}
{A, B, D}+ = {A, B, C, D, E}
{A, B, E}+ = {A, B, C, D, E}
{A, C, D}+ = {A, C, D, E}
{A, C, E}+ = {A, C, E}
{A, D, E}+ = {A, D, E}
{B, C, D}+ = {A, B, C, D, E}
{B, C, E}+ = {A, B, C, D, E}
{B, D, E}+ = {B, D, E}
{C, D, E}+ = {C, D, E}
{A, B, C, D}+ = {A, B, C, D, E}
{A, B, C, E}+ = {A, B, C, D, E}
{A, B, D, E}+ = {A, B, C, D, E}
{A, C, D, E}+ = {A, C, D, E}
{B, C, D, E}+ = {A, B, C, D, E}

→ → →
→

Third Normal Form: Since D E is a functional dependency, but D is not a key, E would have
to be atomic. But E is not part of any key. So, this relation is not in Third Normal Form.

Fourth Normal Form: Since a relation in 4NF is in BCNF, and the relation is NOT BCNF, it
cannot be in 4NF either.

Problem 2:
CREATE DATABASE IF NOT EXISTS streaming;
USE streaming;

DROP TABLE IF EXISTS streaming_rate;
DROP TABLE IF EXISTS film;
DROP TABLE IF EXISTS rate;
DROP TABLE IF EXISTS language1;
DROP TABLE IF EXISTS category;

CREATE TABLE language1 (
 language_id INT PRIMARY KEY,
 name VARCHAR(60) NOT NULL,
 last_update_date DATE NOT NULL
);

CREATE TABLE category (
 category_id INT PRIMARY KEY,
 name VARCHAR(60) NOT NULL,
 last_update_date DATE NOT NULL
);

CREATE TABLE rate (
 rate_id INT PRIMARY KEY,
 name VARCHAR(60) NOT NULL,
 currency VARCHAR(60) NOT NULL,
 amount DECIMAL(10 , 2) NOT NULL CHECK(amount > 0)
);

CREATE TABLE film (
 film_id INT PRIMARY KEY,
 title VARCHAR(60) NOT NULL,
 release_year CHAR(4) NOT NULL,
 language_id INT NOT NULL,
 category_id INT NOT NULL,
 last_update_date DATE NOT NULL,
 FOREIGN KEY (language_id)
 REFERENCES language1 (language_id)
 ON UPDATE CASCADE ON DELETE RESTRICT,
 FOREIGN KEY (category_id)
 REFERENCES category (category_id)
 ON UPDATE CASCADE ON DELETE RESTRICT
);

CREATE TABLE streaming_rate (
 film_id INT,

→

 location_country VARCHAR(60) NOT NULL,
 rate_id INT,
 first_day DATE,
 last_day DATE,
 PRIMARY KEY(film_id, rate_id, first_day),
 FOREIGN KEY (film_id)
 REFERENCES film (film_id)
 ON UPDATE CASCADE ON DELETE RESTRICT,
 FOREIGN KEY (rate_id)
 REFERENCES rate (rate_id)
 ON UPDATE CASCADE ON DELETE RESTRICT
);

Problem 3:
(a)

SELECT DISTINCT
 productScale
FROM
 Products;

(b)

SELECT
 productName, buyPrice, MSRP
FROM
 Products
WHERE
 productScale = ‘1:10';

(c)

SELECT
 productName, ROUND(100* MSRP/buyPrice-100,2) AS markup
FROM
 Products
WHERE
 productScale = ‘1:50';

(d)

SELECT
 productScale, MAX(MSRP)
FROM
 Products
GROUP BY
 productScale;

(e)

SELECT
 *
FROM
 PRODUCTS
WHERE
 MSRP = (SELECT
 MAX(MSRP)
 FROM
 Products)
;

(f)

SELECT
 p.productname, p.productScale, p.buyPrice, p.MSRP
FROM
 products p
 JOIN
 (SELECT
 productscale, MAX(MSRP) AS mmsrp
 FROM
 Products
 GROUP BY productscale) tmsrp ON msrp = mmsrp
;

(g)
SELECT
 customers.customerName,
 payments.checkNumber,
 payments.amount,
 payments.paymentDate
FROM
 customers
 JOIN
 payments USING (customerNumber)
WHERE
 payments.amount < 2000;

(h)

SELECT customerName, SUM(amount)
FROM
payments p INNER JOIN customers c
USING (customerNumber)
GROUP BY
p.customerNumber
ORDER BY Sum(amount) DESC
LIMIT 5;

(i)

SELECT
 c.customerName, c.country
FROM
 offices o
 INNER JOIN
 employees e USING (officecode)
 INNER JOIN
 customers c ON (c.salesRepEmployeeNumber = e.employeeNumber)
WHERE
 o.country = "USA";

(j)

SELECT
 c.customerName
FROM
 productLines pl
 INNER JOIN
 products p USING (productLine)
 INNER JOIN
 orderdetails od USING (productcode)
 INNER JOIN
 orders o USING (orderNumber)
 INNER JOIN
 customers c USING (customerNumber)
WHERE
 pl.textDescription LIKE '%replicas%';

	Problem 3:

