Make-up Homework

Problem 1:

Let R(A, B, C, D, E) be decomposed into relations $R_1(A, B, C)$, $R_2(B, C, D)$ and $R_3(A, C, E)$. For each set of FDs below, use the chase to determine whether the decomposition is lossless and if it is not, give an example of an instance of R that returns more than R after projection and equi-join.

20 pts (1) $B \rightarrow E, CE \rightarrow A, AE \rightarrow D, AC \rightarrow E$

20 pts (2) $CD \rightarrow E, ACD \rightarrow E, AC \rightarrow B$

Problem 2:

What are the closures of all subsets of attributes for the following tables R and S. Which set of attributes are keys and which ones are superkeys.

20 pts	1. $R(A, B, C, D)$ and $\{AB \rightarrow D, BC \rightarrow D, CD \rightarrow A\}$
--------	---

20 pts 2. S(A, B, C, D) and $\{AD \rightarrow B, BD \rightarrow C, CD \rightarrow A\}$

Problem 3:

For the following schemata, decide (with reason given) whether the table is in BCNF or not. If not, show a decomposition into BCNF or argue that this is impossible.

10 pts (1) Problem:

R(Manager, Project, Location) with FDs Manager \longrightarrow Location and

Project, Location \longrightarrow Manager.

10 pts (2) Problem:

 $\begin{array}{c} \mbox{R(itemCode, quantity, price, description) with FD} \\ \mbox{itemCode} \longrightarrow \mbox{description.} \end{array}$