Algebraic and Logical Query Languages

Thomas Schwarz, SJ

Bags, Lists, Sets

- Bags are multi-sets
 - An element can appear more than once
- They are not sets
 - In a set, each element can appear at most once
- They are not lists
 - In a list, elements are indexed

Bags, Lists, Sets

- Why bags:
 - Union, seletion and projection can create the same tuple many times
 - Removing duplicates is difficult:
 - Either use a hash table or use sorting
 - Both of which are expensive in different ways

Bags, Lists, Sets

- Why bags:
 - For some temporary tables, bags are appropriate
 - Aggregation query like find the average salaries of all female employees hired in 2010, 2011, 2012
 - Form a temporary table with salary as only attribute
 - You <u>need</u> to keep values separate

- Union:
 - Just concatenate the two bags
 - If an element appears twice in one bag and thrice in the other, it will appear five times in the union

- Intersection
 - $R \cap S$:
 - Bags match each tuple with another tuple
 - If a tuple appears n times in R and m times in S, then it appears $\min(m, n)$ times in $R \cap S$.

- Difference:
 - Again, bags use one-to-one matching
 - Tuple appears n times in R
 - Tuple appears m times in S
 - Tuple appears $\max(0, n-m)$ times in R-S.
 - Each occurrence in S cancels out a single appearance in R

In short: bags are different from sets

Projection of Bags

- Projection of bags:
 - Each tuple in the mother relation gives rise to one tuple in the projection

Selection of Bags

- Again: selection condition is applied to each tuple
- There is no duplicate elimination

Products of Bags

- Recall: Product assumes that attribute sets are different
- Each tuple of R is paired with each tuple of S

Join tuple by tuple

• Example:

R A B1 21 2

S B C2 34 54 5

 $R \times S$

 $R \bowtie S$

Example:

R A B1 21 2

R ⋈ S A B C
1 2 3
1 2 3

R A B1 21 2

 $R \bowtie_{R.B < S.B} S$ A R.B S.B C

1 2 2 3

1 2 4 5

1 2 2 3

1 2 4 5

1 2 2 3

R A B1 21 2

 $R\bowtie_{R.B < S.B} S$

Relational Algebra Operators

- Deduplication operator δ
- Aggregation operators such as sum, averages are used by grouping operators
- Grouping: Partitions tuples into groups
 - Usually, aggregation is then applied to each group
- Extended projections
 - Allow to create new attributes using arithmetic operations
- Sorting operator
- Outer join operator

Aggregations

- SUM
- AVG
- MIN, MAX
- COUNT
 - not necessarily distinct values in a column

Aggregation

- Example:
 - Find the aggregations of this table

A B

1 2

3 4

1 2

1 2

Aggregation

- Example:
 - Find the aggregations of this table

```
AB

SUM(A) = 6 SUM(B) = 10

AVG(A) = 1.5 AVG(B) = 2

MIN(A) = 1 MIN(B) = 2

MAX(A) = 3 MAX(B) = 4

COUNT(A) = 4 COUNT(B) = 4
```

Grouping

- Find the length of all movies produced by a certain studio
- Project onto studio, length
- Group by studioName

studioName	movieLe	ngth
Disney	89	
Disney	103	
Disney	132	
Disney	76	
MGM	89	
MGM	103	
MGM	89	

Grouping

- Find the length of all movies produced by a certain studio
- Project onto studio, length
- Group by studioName
- Aggregate on movieLength

Grouping Operator

- $\gamma_{\mathsf{op}(A)}(R)$
 - A the grouping attribute
 - op the aggregation operator (e.g. AVG)
 - R the relation

Grouping operator

- $\gamma_{\mathsf{op}(A)}(R)$
 - Partition the tuples of R into groups according to values of A
 - For each group produce one tuple with
 - the grouping attributes' values for that group
 - the aggregation over all tuples of that group
- Generalize to several attributes

Grouping Operator

- Find all stars that appeared in at least three movies and the earliest year in which they appeared
- γstarName,MIN(year)→minYear,COUNT(title)→ctTitle(StarsIn)
- Result has starName, minYear, and ctTitle attributes
- Then select based on the last attribute: ctTitle ≥ 3
- Finally project onto starName and minYear

Extended Projection Operator

- Classic projection $\pi_L(R)$
 - L − set of attributes of R
- Extended projection $\pi_L(R)$
 - L
 - single attributes (as before)
 - - expressions $x \to y$ renaming attribute x to y
 - — expressions $E \to z$ where E is an expression in terms of attributes and operators

Extended Projection Operator

Example

A	В	C
0	1	2
0	1	2
3	4	5

$$\pi_{A,B+C\to X}(R)$$

Extended Projection Operator

Example

A	В	C
0	1	2
0	1	2
3	4	5

$$\pi_{A,B+C\to X}(R)$$

Sorting Operator

- $\tau_L(R)$
 - L is a list of attributes
 - ullet Result is R but ordered according to the list L

- Inner join leaves out certain tuples
- Outer join includes them with null values added

Example

 R
 A B C
 S
 B C D
 $R \bowtie S$

 1 2 3
 2 3 10

 4 5 6
 2 3 11

 7 8 9
 6 7 12

Example

R	A B C	S	В	C	D
	1 2 3		2	3	10
	4 5 6		2	3	11
	7 8 9		6	7	12

$$R \stackrel{o}{\bowtie} S$$

Α	В	С	D
1	2	3	10
1	2	3	11
4	5	6	NULL
7	8	9	NULL
NULL	6	7	12

- Left outer join:
 - Only dangling tuples in the left relation are padded with NULL and added to the relation
- Right outer join:
 - Only dangling tuples in the right relation are padded with NUMM and added to the relation

Example

 R
 A B C
 S
 B C D
 $R \bowtie_l S$

 1 2 3
 2 3 10

 4 5 6
 2 3 11

 7 8 9
 6 7 12

Example

$$R \bowtie_{l}^{o} S$$

A	В	С	D
1	2	3	10
1	2	3	11
4	5	6	NULL
7	8	9	NULL

Example

R	A	В	C	S	В	C	D
	1	2	3		2	3	10
	4	5	6		2	3	11
	7	8	9		6	7	12

$R \bowtie_r^o S$	A	В	С	D
	1	2	3	10
	1	2	3	11
	NULL	6	7	12

Can also be extended to theta joins