
SQL Review
Thomas Schwarz, SJ

Selects from a single table
• Uses a From clause and a Where Clause

• Gives desired attribute names that can be renamed or
subjected to arithmetic calculations

Example
• We will have to pay Value Added Taxes

• Let’s assume we leave it to the clients unless we have a
presence in the country.

•

INSERT INTO VAT(country, vatrate)
VALUES
('France', 0.20),
('Japan', 0.08),
('UK', 0.20),
('Australia', 0.10);

CREATE TABLE VAT
(country VARCHAR(30) KEY,
 vatrate FLOAT)

Example
• We check the VAT-rate of our customers

• Careful: we cannot simply join the VAT table with
customers

• We need an SQL IF condition

• If (boolean, value if true, value if false)

• We check for the presence of the customer’s country
in the VAT table

Example
SELECT
 customers.customerName, customers.country,
 IF(customers.country IN
 (SELECT DISTINCT VAT.country FROM VAT),
 VAT.vatrate,
 0) AS tax
FROM
 customers, VAT;

Example
• Easiest to embed the vat calculation into a function

CREATE FUNCTION `get_vatrate`(mycountry VARCHAR(30))
 RETURNS float
 READS SQL DATA
BEGIN
 RETURN
 IF(mycountry IN (SELECT VAT.country FROM VAT),
 (SELECT VAT.vatrate FROM VAT
 WHERE VAT.country = mycountry),
 0);
END

Example
• Maybe less opaque

CREATE FUNCTION "get_vat"(my_country VARCHAR(30))
 RETURNS float
 READS SQL DATA
BEGIN
 DECLARE myvatrate FLOAT;
 SELECT
 vatrate
 INTO myvatrate
 FROM VAT
 WHERE VAT.country = my_country;
 RETURN IF(myvatrate IS NULL, 0, myvatrate);
END

Example
• We can get now order summaries for a given time

SELECT
 customerName, country, orderNumber, orderDate,
 ROUND(SUM(quantityOrdered * priceEach) *
 (1+get_vatrate(country)),2) AS "Inclusive TAX",
 ROUND(SUM(quantityOrdered * priceEach),2)
 AS "Exclusive Tax"
FROM
 orders JOIN orderdetails USING(orderNumber)
 JOIN customers USING(customerNumber)
WHERE orderDate BETWEEN '2003-01-01' AND '2003-10-01'
GROUP BY orderNumber
ORDER BY customerName;

Dealing with NULL
• Dealing with Null values is important

• First way: Use the IFNULL function

• IFNULL(X, Y) returns X, if X is not NULL

• Otherwise returns Y

Example
• Dealing with VAT again

• A join between customers and VAT on country needs to
be an outer join

•

• or

•

customers LEFT JOIN VAT using(country)

VAT RIGHT JOIN customers using(country)

Example
• The result of the outer join has NULL values for VAT rate

SELECT
 customers.customerName, customers.country,
 IFNULL(VAT.vatrate, 0) AS tax
FROM
 customers LEFT JOIN VAT using(country);

Dealing With NULLS
• Another way is to use the COALESCE function

• Returns the first Non-null argument

Example
• Same result as before

SELECT
 customers.customerName, customers.country,
 COALESCE(VAT.vatrate, 0) AS tax
FROM
 customers LEFT JOIN VAT using(country);

Example
• A better way for the previous question is now
SELECT
 customerName, country, orderNumber, orderDate,
 ROUND(SUM(quantityOrdered * priceEach) *
 (1+ COALESCE(VAT.vatrate,0)),2) AS "Inclusive TAX",
 ROUND(SUM(quantityOrdered * priceEach),2)
 AS "Exclusive Tax"
FROM
 orders JOIN orderdetails USING(orderNumber)
 JOIN customers USING(customerNumber)
 LEFT JOIN VAT USING(country)
WHERE orderDate BETWEEN '2003-01-01' AND '2003-10-01'
GROUP BY orderNumber
ORDER BY customerName;

Select from Multiple Tables
• “Classic” SQL makes implicit joins

• “New” SQL has explicit joins

• In general makes for more understandable statements

• MySQL only has left and right joins, not outer joins

Inner vs. Outer Joins
• A tuple in an inner join on a set of attribute:

• In both tables, these attributes have the same value

• Outer joins allow for missing values, in which case they
become Nulls

Example
• Right Join: All tuples in the left table are represented

SELECT
 customerName, city, country, vatrate
FROM
 VAT RIGHT JOIN customers using(country);

Example
• If we switch, we loose tuples

SELECT
 customerName, city, country, vatrate
FROM
 customers RIGHT JOIN VAT USING (country);

Aggregate Queries
• Without aggregate function

• GROUP BY has the effect of distinct

• GROUP BY orders SELECT status
FROM orders
GROUP BY status;

Aggregate Queries
• With aggregate function

SELECT
 status, SUM(priceEach * quantityOrdered) AS VOLUME
FROM
 orders
 JOIN
 orderdetails USING (ordernumber)
GROUP BY status WITH ROLLUP;

Aggregate Queries
• With aggregate function

SELECT
 status, COUNT(*) AS Incidences
FROM
 orders
 JOIN
 orderdetails USING (ordernumber)
GROUP BY status WITH ROLLUP;

Aggregate Queries
• We use a WHERE clause to sub-select before grouping

SELECT
 status, COUNT(*) AS Incidences
FROM
 orders
 JOIN
 orderdetails USING (ordernumber)
WHERE YEAR(orderDate) = 2004
GROUP BY status WITH ROLLUP;

Aggregate Queries
SELECT
 YEAR(orderDate) as YEAR,
 SUM(priceEach * quantityOrdered) AS "Cancelled Volume"
FROM
 orders
 JOIN
 orderdetails USING (ordernumber)
WHERE status = 'cancelled'
GROUP BY YEAR(orderDate) WITH ROLLUP;

Aggregate Queries
• A MySQL specialty not in SQL:

• You can have an alias in Group By:

SELECT
 YEAR(orderDate) as year, SUM(priceEach *
quantityOrdered) AS "Cancelled Volume"
FROM
 orders
 JOIN
 orderdetails USING (ordernumber)
WHERE status = 'cancelled'
GROUP BY year WITH ROLLUP;

Alias

Aggregate Queries
• WHERE

• Filters Records

• HAVING

• Filters Groups

SELECT
 select_list
FROM
 table_name
WHERE
 search_condition
GROUP BY
 group_by_expression
HAVING
 group_condition;

Aggregate Queries
• Example:

• Overview of orders in January 2003
SELECT
 ordernumber,
 shippedDate,
 SUM(quantityOrdered) AS itemsCount,
 SUM(priceeach*quantityOrdered) AS total
FROM
 orderdetails JOIN orders USING(ordernumber)
WHERE shippedDate between "2003-01-01" AND "2003-01-31"
GROUP BY ordernumber;

Aggregate Queries
• What about big orders only?

SELECT
 ordernumber,
 shippedDate,
 SUM(quantityOrdered) AS itemsCount,
 SUM(priceeach*quantityOrdered) AS total
FROM
 orderdetails JOIN orders USING(ordernumber)
WHERE shippedDate between "2003-01-01" AND "2003-01-31"
GROUP BY ordernumber
HAVING total > 10000.00;

Common Table Expressions
• Creates a named, temporary table to simplify queries

• Defined with a WITH clause

WITH cte_name (column_list) AS (
 query
)

Example
WITH customers_in_asia AS (
 SELECT *
 FROM customers
 WHERE country in
 ('Japan', 'India', 'Singapore', 'Hong Kong’,
 'Philippines')
)
SELECT * FROM customers_in_Asia;

Example
• Finding the top sales people in 2004

WITH topsales AS (
 SELECT employeeNumber, firstName, lastName,
SUM(quantityOrdered*priceEach) AS sales, officeCode
 FROM orderdetails JOIN orders USING(orderNumber)
 JOIN customers USING(customerNumber)
 JOIN employees ON
salesRepEmployeeNumber = employeeNumber
 WHERE YEAR(shippedDate) = 2004
 GROUP BY salesRepEmployeeNumber
 ORDER BY sales DESC
 LIMIT 5)
 SELECT * FROM topsales;

Example
• Which is the most successful office? Only top

salespeople count:

Example
WITH topsales AS (
 SELECT employeeNumber, firstName, lastName,
 SUM(quantityOrdered*priceEach) AS sales, officeCode
 FROM orderdetails JOIN orders USING(orderNumber)
 JOIN customers USING(customerNumber)
 JOIN employees ON
 salesRepEmployeeNumber = employeeNumber
 WHERE YEAR(shippedDate) = 2004
 GROUP BY salesRepEmployeeNumber
 ORDER BY sales DESC
 LIMIT 5)
 SELECT SUM(sales) as volume, city, country
 FROM topsales JOIN offices USING(officeCode)
 GROUP BY officeCode
 ORDER BY volume DESC;

