
Views
Thomas Schwarz, SJ

Virtual Views
• Relations can be real

• CREATE TABLE …

• or virtual

• CREATE VIEW

• Do not exist physically

• Defined through a query like expression

• Can be queried as if they are real tables

Virtual Views
• SQL Programming Language:

• Table: Relation that exists

• View: Relation that is virtual

• Temporary: Created while a query is executed and
afterwards discarded

Virtual Views
• Another perspective:

• Frequent queries

• Can be typed in

• Can be made into an sql script

• Can be made into a Java / Python / … script

• Or can be made into a view

• Views are frozen queries?!?

Creating Views
• Views are defined via CREATE VIEW

CREATE VIEW MGMMovies AS

 SELECT title, year

 FROM Movies

 WHERE studioName = 'MGM';

Creating Views

CREATE VIEW MovieProd AS

 SELECT title, name

 FROM movies, movieExec

 WHERE producerC# = cert#;

movies(title, year, length, genre, studioName, producerC#)
movieExec(name, address, cert#, netWorth)

Creating Views
SELECT * FROM classicmodels.employees;

CREATE VIEW managers AS

 SELECT

 employeeNumber, firstName, lastName, jobTitle

 FROM

 employees

 WHERE

 jobTitle = 'President'

 OR jobtitle LIKE '%VP %'

 OR jobtitle LIKE '% Manager %';

Creating Views
• We can now access the view as a normal table

SELECT * FROM classicmodels.managers;

Creating Views
• We can now access the view as a normal table:

• People reporting to someone with a last name in
manager

SELECT

 e.firstName,

 e.lastName,

 e.jobTitle,

 e2.firstName,

 e2.lastName,

 e2.jobTitle

FROM

 employees e,

 employees e2,

 managers m

WHERE

 e.reportsTo = e2.employeeNumber

 AND e2.lastName = m.lastName;

Creating Views
• We can now access the view as a normal table:

• People reporting to someone with a last name in
manager

Creating Views
• You can create views that do not depend on tables

CREATE VIEW daysofweek (day) AS

 SELECT 'Mon'

 UNION

 SELECT 'Tue'

 UNION

 SELECT 'Web'

 UNION

 SELECT 'Thu'

 UNION

 SELECT 'Fri'

 UNION

 SELECT 'Sat'

 UNION

 SELECT 'Sun';

Creating Views
• You get rid of views by using a drop statement

DROP VIEW managers;

Creating Views
• Or you can alter a view:

• Managers have someone that reports to them

ALTER VIEW managers AS

SELECT DISTINCT (e.employeeNumber), e.firstName,
e.lastName, e.jobTitle

FROM employees e, employees e2

WHERE e2.reportsTo = e.employeeNumber;

Creating Views

Creating Views
• You can name columns when you create a view

CREATE OR REPLACE VIEW customerOrders AS

SELECT

 orderNumber,

 customerName,

 SUM(quantityOrdered * priceEach) total

FROM

 orderDetails

INNER JOIN orders o USING (orderNumber)

INNER JOIN customers USING (customerNumber)

GROUP BY orderNumber;

Creating Views
SELECT customerName, count(orderNumber) AS nrOrders

FROM customerorders

GROUP BY customerNumber

ORDER BY nrOrders DESC;

Creating Views
• You can check on your defined views by

SHOW FULL TABLES

WHERE table_type = 'VIEW';

Creating Views
SELECT

 table_name view_name

FROM

 information_schema.tables

WHERE

 table_type = 'VIEW' AND

 table_schema = 'classicmodels';

Interacting with Views
• Interacting with Views

• A view, once defined, can be queried just like a real
table

SELECT title

FROM MGMMovies

WHERE year = 1979;

Interacting with Views

SELECT DISTINCT starName

FROM MGMMovies, starsIn

WHERE title = movieTitle AND year = movieYear

starName(title, year, name)

Interacting with Views
• We can rename the attributes in a VIEW

• attribute names in the view are now movieTitle and
prodName

CREATE VIEW movieProd(movieTitle, prodName) AS

 SELECT title, name

 FROM movies, movieExec

 WHERE producerC# = cert#;

Exercises

• A view RichExec with name address, certificate number,
and net-worth of all executives with more than 10 million
net-worth

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

Exercises

• A view RichExec with name, address, certificate number,
and net-worth of all executives with more than 10 million
net-worth

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

CREATE VIEW RichExec(execName, execAddress, cert#,
netWorth) AS

 SELECT name, address, cert#, netWorth

 WHERE netWorth > 10000000;

Exercises

• A view StudioPres with name, address, netWorth of studio
presidents

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

Exercises

• A view StudioPres with name, address, netWorth of studio
presidents

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

CREATE VIEW StudioPres AS

 SELECT name, address, netWorth

 FROM movieExec

 WHERE cert# IN (

 SELECT presC#

 FROM studio);

Exercises

• A view ExecutiveStar giving the name, address, gender,
birth date and certificate number of movie stars that are
also movie executives

• Assume that executives with the same name and
address as a movie star are the movie star

• Even though there is no reason to assume this

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

Exercises

• A view ExecutiveStar giving the name, address, gender, birth date
and certificate number of executives that are also movie executives

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

CREATE VIEW ExecutiveStar AS

 SELECT ms.name, ms.address, ms.gender,

 ms.birthdate, me.cert#

 FROM movieStar ms, movieExec me

 WHERE ms.name = ms.name AND ms.address = me.address

View Algorithms

in MySQL

• Views are defined in the SQL standard but DBMS are free
to add to them

• MySQL has an optional algorithm field

• Determines how views are integrated into queries

CREATE [OR REPLACE][ALGORITHM = {MERGE | TEMPTABLE |
UNDEFINED}] VIEW

 view_name[(column_list)]

AS

 select-statement;

View Algorithms

in MySQL

• Merge:

• Merge the input query with the SELECT statement in
the view

• Execute the combined query

View Algorithms

in MySQL

• Example:

CREATE OR REPLACE

 ALGORITHM = MERGE

VIEW hr_contacts AS

 SELECT

	 	 employeeNumber,

 CONCAT(firstName, ' ', lastName) AS emp_name,

 email,

 CONCAT(phone, ' ', extension) AS emp_phone

 FROM

 employees

 INNER JOIN

 offices USING (officeCode);

View Algorithms

in MySQL

• Issue a query

SELECT DISTINCT

 hrc.emp_name

FROM

 hr_contacts hrc,

 customers cus

WHERE

 cus.country = 'USA'

 AND cus.salesRepEmployeeNumber =

 hrc.employeeNumber

ORDER BY hrc.emp_name ASC;

View Algorithms

in MySQL

• This query and the view query are then merged

SELECT DISTINCT

 CONCAT(emp.firstName, ' ', emp.lastName) AS ename

FROM

 employees emp,

 customers cus

WHERE

 cus.country = 'USA'

 AND cus.salesRepEmployeeNumber =

 emp.employeeNumber

ORDER BY ename ASC;

View Algorithms

in MySQL

• If you use TEMPTABLE instead, then

• MySQL creates a temporary table to store the view

• Execute the query using the temporary table

• Temporary table will be created every time anew

Modifying Views
• Some views can be used to update the underlying tables

• View Removal

•

• Just like Table removal

•

• which would also make the view MGMMovies unusable

DROP VIEW MGMMovies

DROP TABLE movies

Modifying Views
• Updatable views

• SQL has clear, but complicated definitions when a view
can be updated (and an underlying table changed)

• View must be defined by SELECT

• There is only one relation R in the definition

• No subquery involving R in the WHERE clause

• Enough attributes of R are involved in the view

Modifying Views
• MGMMovies fulfills the requirements

• If we insert via the view:

•

• movies will get a new tuple

• title: 'Get Shorty', year: 1995

• Everything else: Null

• Interestingly, because of the latter, the view itself would
not be updated

INSERT INTO MGMMovies

VALUES('Get Shorty', 1995)

movies(title, year, length, genre, studioName, producerC#)

Modifying Views
• The view insertion

• has the same effect as inserting into the underlying table

INSERT INTO MGMMovies

VALUES('Get Shorty', 1995)

INSERT INTO movies

VALUES('Get Shorty', 1995)

Modifying Views
• To address this anomaly, need to add to the view

CREATE OR REPLACE VIEW MGMMovies(name, title, studio) AS

 SELECT name, title, studioName

 FROM movies

 WHERE studio = 'MGM';

Modifying Views
• Now it works

• which is equivalent to

• and assumes that we do not have any triggers or
constraints against NULL values for the other
attributes

• but now the view also changes

INSERT INTO MGMMovies

VALUES('Find Shorty', 1995, 'MGM')

INSERT INTO movies(name, year, studioName)

VALUES ('Find Shorty', 1995, 'MGM')

Modifying Views
• Deletions are also passed through the underlying table

•

• gets translated into

DELETE FROM MGMMovies

WHERE title LIKE '%Shorty%';

DELETE FROM movies

WHERE title LIKE '%Shorty%' AND studioName = 'MGM';

Modifying Views

• becomes

UPDATE MGMMovies

SET year = 1968

WHERE title = 'Get Shorty';

UPDATE movies

SET year = 1968

WHERE title = 'Get Shorty' AND

 studioName = 'MGM';

Modifying Views
• Including all properties in a view is a kludge

• Can use a trigger instead

• Use the INSTEAD OF syntax

CREATE TRIGGER mgmInserts

INSTEAD OF INSERT ON mgmInserts

REFERENCING NEW ROW as newRow

FOR EACH ROW

INSERT INTO movies(title, year, studioName)

VALUES(newRow.title, newRow.year, 'MGM');

Modifying Views in MySQL
• MySQL only started to support views in Version 5 (2008)

• Supports updatable views

• But not the INSTEAD trigger

Updating Views in MySQL
• Create a view

CREATE VIEW officeInfo AS

 SELECT

 officeCode, phone, city

 FROM

 offices;

Updating Views in MySQL
• We can query the view

SELECT

 *

FROM

 officeinfo;

Updating Views in MySQL
• We can update the view

UPDATE officeinfo

SET

	 phone = '+01 408 7241044'

WHERE

	 city LIKE '%San Francisco%';

Updating Views in MySQL
• And this works:

Updating Views in MySQL
• Insertion does not work because there are no default

values for other columns
INSERT INTO officeinfo(

 officeCode,

 phone,

 city

)

VALUES(

 13,

 '01 408 724 1999',

 'San Jose'

);

Error Code: 1423. Field of view
'classicmodels.officeinfo' underlying table
doesn't have a default value

Updating Views in MySQL
• Create a view for VPs CREATE OR REPLACE VIEW vps AS

 SELECT

 employeeNumber,

 lastName,

 firstName,

 jobTitle,

 extension,

 email,

 officeCode,

 reportsTo

 FROM

 employees

 WHERE

 jobTitle LIKE '%VP%';

Updating Views in MySQL
• Now we have a view that we can update

INSERT INTO
vps(employeeNumber,firstname,lastname,

jobtitle,extension,email,officeCode,rep
ortsTo)

VALUES(

1704,'Thomas','Schwarz','CIO','x9112','
tschwarz@classicmodelcars.com',1,1002);

Updating Views in MySQL
• But the new “employee” is not visible in the vps view

• Because the title does not have VP in it

• But it is in the employees table

Updating Views in MySQL
• To prevent this, we

redefine VPs with
the check option

CREATE OR REPLACE VIEW vps AS

 SELECT

 employeeNumber,

 lastName,

 firstName,

 jobTitle,

 extension,

 email,

 officeCode,

 reportsTo

 FROM

 employees

 WHERE

 jobTitle LIKE '%VP%'

WITH CHECK OPTION;

Updating Views in MySQL
• Now the same query is rejected

INSERT INTO
vps(employeeNumber,firstname,lastname,

jobtitle,extension,email,officeCode,rep
ortsTo)

VALUES(

1704,'Thomas','Schwarz','CIO','x9112','
tschwarz@classicmodelcars.com',1,1002);

Error Code: 1369. CHECK OPTION failed
'classicmodels.vps'

Materialized Views
• Views are virtual

• Created whenever they are accessed

• But views can be heavily used

• Views are used to:

• Easier query logic because the definition of the view
encompasses the difficulties

• E.g. a view that uses a join of many tables

• Security: Restrict access to tables, but give access to
views

• Enforce business rules: What is "active", what is "popular"

Materialized Views
• Virtual views that are heavily used means

• running a query against a view

• running a query to recreate the view

• Materialized views store the view in a derived table

• Not all DBMS support materialized views

• Some give it a different name

• Typical command:
CREATE MATERIALIZED VIEW movieProd AS

 SELECT title, year, name

 FROM movies, movieExec

 WHERE procuderC# = cert#

Materialized Views
• Materialized views need to be maintained

• Some updates / inserts / deletes to movieExec and
movies need to be intercepted

• The changes to the materialized view are incremental

Materialized Views in
MySQL

• They do not exists as materialized views

• But we can work around it:

• Materialized views are tables that are modified by
modifications to the base tables

• Can use triggers to intercept modifications of the base
tables in order to update the materialized view

Try It Out
• Use the employees database in MySQL

• You might want to turn of automatic commits, then do
a commit and at the end of the session a rollback

• Task 1: Convince yourself that there are no emp_no
larger than 500000

Try It Out

USE employees;

SELECT *

FROM dept_emp

WHERE emp_no >=500000;

Try It Out
• Task 2: Insert three persons into the employees table

with employee numbers 600000, 600001, 600002. You
can invent the missing dates.

• The hire date should be the day of today

• In MySQL that is CURDATE()

Try It Out
INSERT INTO employees(emp_no, birth_date, first_name,
last_name, gender, hire_date)

VALUES

 (600000, '1980-01-01', 'Hector', 'Garcia Molinas',
'M', CURDATE()),

 (600001, '1981-01-01', 'Ursula', 'Leyendorf', 'F',
CURDATE()),

 (600002, '1982-01-01', 'Bob', 'Karragher', 'M',
CURDATE());

Try It Out
• Create a view of dept_emp that only contains entries with

to_date unlimited

• i.e. '9999-01-01' which is used to indicate an open
contract.

• Call the view v_current_dept_emp

• Include all attributes so that we can update

Try It Out

CREATE OR REPLACE VIEW v_current_dept_emp AS

	 SELECT emp_no, dept_no, from_date, to_date

 FROM dept_emp

 WHERE to_date = '9999-01-01';

Try It Out
• Now insert the three new employees into the view

• from_date is today

• Department is 'd004'

Try It Out

INSERT INTO v_current_dept_emp(emp_no, dept_no,
from_date, to_date)

VALUES

 (600000, 'd004', CURDATE(), '9999-01-01'),

 (600001, 'd004', CURDATE(), '9999-01-01'),

 (600002, 'd004', CURDATE(), '9999-01-01');

Try It Out
• Check that these updates made it to the dept_emp table

as well as the view

Try It Out
SELECT *

FROM v_current_dept_emp

WHERE emp_no >=500000;

SELECT *

FROM dept_emp

WHERE emp_no >=500000;

Try It Out
• Change the view v_current_dept_emp to have only three

columns: emp_no, dept_no, from_date by recreating it

Try It Out
CREATE OR REPLACE VIEW v_current_dept_emp AS

	 SELECT emp_no, dept_no, from_date

 FROM dept_emp

 WHERE to_date = '9999-01-01';

• The CREATE OR REPLACE clause makes it easy.

• You could also say DROP VIEW and then do a CREATE
VIEW

Try It Out
• Check the table dept_emp for its definition

Try It Out
• In MySQLWorkbench:

• Click on the table and the info tab

Try It Out
• In the view, select DDL, which gives you the definition of

the table

Try It Out
• Alternatively, you can select columns

• Both methods show that we have a NOT NULL
constraint on to_date

Try It Out
• Alter the table dept_emp to have a default value of

'9999-01-01' in the to_date.

• We could also remove the NOT NULL restriction

Try It Out

ALTER TABLE dept_emp

MODIFY COLUMN to_date date NOT NULL DEFAUlT '1-01-01';

Try It Out
• If we try to add directly to the table with new values, we

violate a foreign key constraint.

INSERT INTO v_current_dept_emp(emp_no, dept_no, from_date)

VALUES

	 (600003, 'd004', CURDATE()),

 (600004, 'd004', CURDATE()),

 (600005, 'd004', CURDATE());

