
Midterm Solutions
Problem 1:
CREATE TABLE customer (
 customer_id INT NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(63),
 last_name VARCHAR(63),
 address VARCHAR(255) DEFAULT '',
 PRIMARY KEY (customer_id)
);

CREATE TABLE complaint (
 complaint_id INT NOT NULL AUTO_INCREMENT,
 customer_id INT,
 complaint TEXT,
 PRIMARY KEY (complaint_id),
 CONSTRAINT FK_customer_id FOREIGN KEY (customer_id)
 REFERENCES customer (customer_id)
 ON DELETE CASCADE ON UPDATE CASCADE
);

Problem 2
SELECT
 first_name, last_name
FROM
 employees
 JOIN
 salaries USING (emp_no)
WHERE
 salary = (SELECT
 MAX(salary)
 FROM
 salaries);

Problem 3:
CREATE TEMPORARY TABLE top_ten_salaries
(SELECT
 salary
FROM
 salaries
ORDER BY salary DESC
LIMIT 10);

SELECT DISTINCT
 first_name, last_name
FROM
 employees
 JOIN
 salaries USING (emp_no)
WHERE
 salary IN (SELECT

 *
 FROM
 top_ten_salaries);

Problem 4:
SELECT
 dep_name, AVG(salary) AS 'Average Salary'
FROM
 salaries
 JOIN
 departments ON dep_no = dep_id
WHERE
 start_day <= '2020-01-06'
 AND end_day >= '2020-01-06'
GROUP BY dep_name;

Problem 5:
SELECT
 first_name, last_name
FROM
 employees
 JOIN
 salaries USING (emp_no)
 JOIN
 departments ON dep_no = dep_id
WHERE
 office_id IN (SELECT
 office_id
 FROM
 employees
 JOIN
 salaries USING (emp_no)
 JOIN
 departments ON dep_no = dep_id
 WHERE
 employees.first_name = 'Ingrid'
 AND last_name = 'Koch')
 AND hire_day BETWEEN (SELECT
 hire_day
 FROM
 employees
 WHERE
 first_name = 'Ingrid'
 AND last_name = 'Koch') AND (SELECT
 last_day
 FROM
 employees
 WHERE
 first_name = 'Ingrid'
 AND last_name = 'Koch');

Problem 6:
(a) InsuranceCompName -> InsuranceCompAddress and Name, Birthday, Phone -> Address

are functional dependencies (among others) where the left side is not a super-key.

(b) ; ; ;

; ; ;
; , i.e. is a key.

; ; ;
 .

(c) We set up a table where each row corresponds to a decomposition table and the columns
to the attributes of the original table. This gives us

{A}+ = {A, D, E} {B}+ = {B} {C}+ = {C}; {D}+ = {A, D, E}+ {E}+ = {E} .
{A, B}+ = {A, B, D, E} {A, C}+ = {A, C, D, E} {A, D}+ = {A, D, E}
{A, E} = {A, D, E} {B, C}+ = {A, B, C}+ = {A, B, C, D, E} BC
{B, D}+ = {A, D, E} {B, E}+ = {B, E} {C, D}+ = {A, C, D, E}
{C, E}+ = {C, E}; {D, E}+ = {A, D, E}

We first apply . This gives

We then can apply . This gives

We can apply . This gives

We can apply . This gives

A B C D E

d2

e3d

e

c e1

a3

a

c3

c2ba

b

b1 d

A → D

A B C D E

b1

a

c3

d e

c

b

a3 e3

a

b

e1d

c2

d

A → E

A B C D E

a

b e3d

c2

c

e

a3

b

e

d

db1

c3

a

D → A

A B C D E

c3 e3b

b

d

e

a

dc2

e

a

b1

a

dc

D → E

A B C D E

a b d

b1

e

a d

e

b

c3

d

e

a c

c2

No more functional dependencies will change the table. We can now construct a
counterexample by just using this table as relations in the original database table. This table
fulfills all functional dependencies

and has projections

When we join, we get

A B C D E

ea

b

c

d

e

b

c2

e

d

a

b1

a c3

d

A C D

c2a

c3

d

d

a d

a

c

A B E

ba

a b1

e

e

B D

b d

b1 d

A B C D E

b

d

d

c

b1

a eb

c2b1

b1

a

e

c3

d

a e

c

d

a

a

c2

d

e

e

which obviously has more rows than the original database table.

A B C D E

b edc3a

	Problem 1:
	Problem 2
	Problem 3:
	Problem 4:
	Problem 5:
	Problem 6:

