Midterm Solutions

Problem 1:

CREATE TABLE customer (
Customer_id INT NOT NULL AUTO_INCREMENT,
first name VARCHAR (63),
last name VARCHAR(63),
address VARCHAR (255) DEFAULT '',
PRIMARY KEY (customer id)
);

CREATE TABLE complaint (
complaint id INT NOT NULL AUTO_ INCREMENT,
customer id INT,
complaint TEXT,
PRIMARY KEY (complaint id),
CONSTRAINT FK customer id FOREIGN KEY (customer id)
REFERENCES customer (customer id)
ON DELETE CASCADE ON UPDATE CASCADE
) ;

Problem 2

SELECT
first name, last name
FROM
employees
JOIN
salaries USING (emp no) Dietmar Brandt
WHERE
salary = (SELECT
MAX (salary)
FROM
salaries);

Problem 3:

CREATE TEMPORARY TABLE top ten salaries

first_name last_name

(SELECT
salary
FROM
salaries
ORDER BY salary DESC .
LIMIT 10); first_name last_name
SELECT DISTINCT Joseph Carter
first name, last name Arjun Pathak
FROM Dietmar Brandt
employees z
JOIN Emily Morgan
salaries USING (emp no)
WHERE

salary IN (SELECT

*

FROM
top ten salaries);

Problem 4:

SELECT

dep name, AVG(salary) AS 'Average Salary'

FROM
salaries
JOIN
departments ON dep no = dep id
WHERE
start day <= '2020-01-06"
AND end day >= '2020-01-06"
GROUP BY dep name;

Problem 5:

SELECT
first name, last name
FROM
employees
JOIN
salaries USING (emp_no)
JOIN

departments ON dep no = dep id
WHERE
office id IN (SELECT
office id

FROM
employees
JOIN
salaries USING (emp_ no)
JOIN
departments ON dep no = dep id
WHERE
employees.first name = 'Ingrid'
AND last name = 'Koch')
AND hire day BETWEEN (SELECT
hire day
FROM
employees
WHERE
first name = 'Ingrid'
AND last name = 'Koch') AND
last day
FROM
employees
WHERE
first name = 'Ingrid'

AND last name = 'Koch');

(SELECT

first_name last_name

[N g'esias
Francisco Serrano
Sandra Gray

Albert Evans
Emilio Sanchez
Lisa Bailey
Ingrid Koch
Jacobo Sanz
Maria Pérez
Ishani Prakash
Valery Garcia
Aarya Chaudhari
Beate Klein
Pablo Gobmez
Anja Lehmann
Fatima Rubio
Marie Thompson
Margarete Weber
Emma Carter
Kanha Molla
Srihan Debbarma
Rose Wilson
Virat Alam
Paula Martin
Emilio Marin
Problem 6:

(@ InsuranceCompName -> InsuranceCompAddress and Name, Birthday, Phone -> Address
are functional dependencies (among others) where the left side is not a super-key.

b) {A}* ={A,D,E}; {B}"={B}; {C}"={C}; {D}" ={A,D,E}*; {E}" ={E}.
{A,BY* = {A,B,D,E); {A,C}* = {A,C,D,E); {A,D}* = {A,D,E}:
{A,E}={A,D,E}; {B,C}*={A,B,C}"={A,B,C,D,E},ie. BCis akey.
(B,DY* = {A,D,E); {B,E}* = (B,E}: {C,D}* = {A,C,D,E};
{C,E}*={C,E}; {D,E}t*={A,D,E}.

(c) We set up a table where each row corresponds to a decomposition table and the columns
to the attributes of the original table. This gives us

a b, c d e
a b Cy d, e
as b c3 d e

We first apply A — D. This gives

a b, c d e
a b) d e
as b c d e

a b, c d e
a b Cy d e
as b C3 d €3

We can apply D — A. This gives

a b, c d e
a b Cy d e
a b 3 d e,

We can apply D — E. This gives

a b, c d e
a b Cy d e
a b c d e

No more functional dependencies will change the table. We can now construct a
counterexample by just using this table as relations in the original database table. This table
fulfills all functional dependencies

A B (3 D E
a b, c d e
a b Cy d e
a b G d e
and has projections
A Cc D
a c d
a ¢ d
a 3 d
A B E
a b, e
a b e
B D
b, d
b d
When we join, we get
A B Cc D E
a b, c d e
a b, ¢, d e
a b, c d e
a b c d e
a b) d e

which obviously has more rows than the original database table.

	Problem 1:
	Problem 2
	Problem 3:
	Problem 4:
	Problem 5:
	Problem 6:

