Neo4j

Neo4j

e Neodj Graph Database
e Store nodes together with adjacencies as pointers

 Edge chasing is quick

O =

o

Neo4j

e Implements ACID transaction model
* |s schema-less
* Nodes can have any property
* Nodes can have any type of relation to another node

 Query language “Cipher” does matching

Neo4j

Modeling with diagrams can be simpler

Bob User User-Group Group
id: int | user_id.: in.t id: int |
name: string group_id: int name: string

belongs_to

Neo4j

e Cypher uses ASClII-art for queries

MATCH (p)-[:belongs to]->(qg)
WHERE p.name = "Bob"
RETURN g.name

MATCH (p)-I[:belongs to]->(g)
WHERE g.name = "Cailissa Chess Club"
RETURN p.name

Neo4j

* More complicated relations are harder to represent Iin
relational tables

Bob

belongs_to

has_role

DB
Security \

DB- has
has is_subgroup Admin permission
permission

'

has
permission

/

Write
Permission
/ssrc/db

Neo4j

* Nodes and relationship can have many properties

name: Alice Bat frilesn d name: Bob Cat name: Trudy Sow
type: User of type: User type: User
has seen has se.ezn has seen has_seen
rating: 5 rating. \ rating: 4 rating: 3
name: Fargo name: Alien$ name: Herbie

type: Movie type: Movie type: Movie

Neo4j

e Create a project using
NeO4j DeSktOp Projects 4 Active DBMS

example

e Make sure to stop a
currently running DBMS

O Project 1

Project 1

&8 example 5.

 Use the stop button

e On the left sidebar, click
new

 This creates a project
named "Project”

e Click on
Create
project

Projects 8

Create project

Create project from directory

Import project from archive

Import sample project

Ne

No active DBMS

War of 1812

£8 Naval actions 5.21.0

This list of databases is ca:

Neo4|

® NeXt tO the name, you No active DBMS

can edit =
Project\‘ @]
 Hover your mouse so —

that you can see the
button

 Change the name and
then click the check —
mark ‘\ MyProject ’ |\“J"

No active DBMS

Neo4j

* You need to create a database in the project
e Click the add button on the right
 You can select the Neo4j version
 Which might trigger an update

* You need to select a password with >= 8
characters

e Hit the create button

* You can start and stop a database by
hovering to the right of the database name

Neo4j

* |Importing data with csv
* Download from

e https://s3.amazonaws.com/dev.assets.neodj.com/
wp-content/uploads/desktop-csv-import.zip

e OR
e Go to the tutorial

e "how to import csv file in neo4j desktop"

Neo4j

* You need to place the downloaded csv files in an import

directory

* To the right of the DBMS, there are three dots for options

Project 1

S8 example 5210 & AcTive

@ neodj (default)

© Create database =~ Refresh

File

Add project files to get started.

‘ O Add -~

Settings...
Logs...
)pen folder
DBMS
erminal
Import
Plugins
Logs

Configuration

Neo4j

e Click on the "import" menu item
e This should open up a directory viewer

e Copy or move your csv files there

® o import = % o« @ o Q
Name A~ Date Modified Size Kind
@ AirDrop
. order-details.csv December 27, 2018 at 22:58 27 KB comma...d values
@ Recents -
. orders.csv December 27, 2018 at 22:54 31 KB comma...d values
A Applications
.| products.csv January 8, 2019 at 21:35 2 KB comma...d values
© Downloads
| {2} thomasschwarz
5 AAAResearch
B35 Classes
£5 Book
[a) Pictures

B35 Google Drive

B3 IsDispersionGood
5 Dispersion

J? Music

5 Deleted Users

5 John

Neo4j

e Start the Neo4| Browser

Neodj Desktop - 1.6.0

Active DBMS [o o]
Graph DBMS o

Open with Neo4) Browser
NAaaA: CtaviAw M AAA] ‘

Neodj-Starter 5.26.4

Neo4j

* At the very top of the browser, there is a window for
commands y

art |
neodqj ') .)
b) Getting started with Try Neod4j with live Cypher basics
Neo4j Browser data Intro to Graphs with Cypher
Neo4j Browser user interface guide A complete example graph that What is a graph database?
demonstrates common query . N
pattorns. How can | query a graph:

Actors & movies in cross-referenced
pop culture.

© Openstide © surtdening

Copyright © Neodj, Inc 2002-2025

Sign up for a free Neodj cloud instance with sNE04j aura

:server status > e

Connection You are connected as user
status to
r Connection credentials are stored in you o

T

* Inside this window on the right is the "execute" / "play”
button

* When it opens, most of the real-estate is used up by
helpful links

Neo4j

e We can look at csv-file contents with LOAD CSV
* This will not import data.

* |In the window on top, type in (or copy from the tutorial)

e TOAD CSV FROM 'file:///products.csv' AS
row RETURN row LIMIT 10;

* Notice the three forward slashes
* This will display the first 10 rows

* On the left, you can select the visualization: Table,
Text, Code

Constraints

e You can use constraints to filter out bad data

e Create a constraint "uniqueproduct”

® create constralint uniqueproduct FOR
(p:Product) requilire p.1d 1s uniqgque;

e Do the same for orders:

® create constralnt unigqueorder FOR
(0:0rder) require o.1d 1s unigque;

Conversions

* When importing data, we need to convert strings to other
data-types

® tolnteger

® toFloat

® datetime Or date

® toString

Conversions

* You can try out the result of conversions on csv data:

® LOAD CSV FROM 'file:///products.csv' AS row
WITH toInteger (row[0]) AS productIld,
row[1l] AS productName,
toFloat (row[2]) AS unitCost
RETURN productId, productName, unitCost
LIMIT 3;

Conversions

* For orders, some string surgery is needed:
* The csv file has data times with a space

* Neo4j needs a T instead:

¢ 1996-07-04 00:00:00.000 —> 1996-07-04
T0O0:00:00.000

LOAD CSV WITH HEADERS FROM 'file:///orders.csv'

AS row

WITH toInteger (row.orderID) AS orderld,

datetime (replace (row.orderDate,' ', 'T')) AS orderDate,
row.shipCountry AS country

RETURN orderId, orderDate, country

LIMIT 5;

Conversions

LOAD CSV WITH HEADERS FROM 'file:///order-details.csv'
AS row

WITH tolInteger (row.productID) AS productld,

tolInteger (row.orderID) AS orderld,

toInteger (row.quantity) AS quantityOrdered

RETURN productlId, orderId, quantityOrdered

LIMIT 8;

Database Design

e Datamodel:
 QOrders (orange) and products (violet) are nodes

* QOrder-details gives the relationship

Creating Data

* Now we are ready to create the elements in the data-base

* We use Merge because a constraint violation will not
cause the rest of the operation to abort

LOAD CSV FROM 'file:///products.csv' AS row
WITH toInteger (row[0]) AS productId, row[l] AS
productName, toFloat (row[Z2]) AS unitCost

MERGE (p:Product {productId: productId})

SET p.productName = productName,

p.unitCost = unitCost

RETURN count (p) ;

Creating Data

LOAD CSV WITH HEADERS FROM 'file:///orders.csv' AS row
WITH toInteger (row.orderID) AS orderlId,

datetime (replace (row.orderDate,' ','T')) AS orderDate,
row.shipCountry AS country

MERGE (o0:0rder {orderId: orderId})

SET o.orderDateTime = orderDate,

o.shipCountry = country

RETURN count (o) ;

Creating Data

LOAD CSV WITH HEADERS FROM 'file:///order-
details.csv' AS row

WITH row

MATCH (p:Product {productlId:

toInteger (row.productlID) })

MATCH (0:0rder {orderId: tolInteger (row.orderID)})
MERGE (0)-[rel:CONTAINS {quantityOrdered:

toInteger (row.quantity) }] —-> (p)

Checking

e Create a generic match

MATCH (o:Order)-[rel:CONTAINS]— (p:Product)
RETURN p, rel, o LIMIT 50;

1

2
.
Graph *1998-0...

Table
“1997-0..
Text
1,4’

Overview

Node labels

D
Relationship types

m CONTAINS (51)

Displaying 51 nodes, 50
relationships.

%

©® Use Cmd + scroll to zoom

Nan't chnw anain

Checking

e Create a specific match

MATCH(o:0rder)-[rel :CONTAINS]—(p:Product) WHERE o. shipCountry="Germany"

rel.quantityOrdered > 50 RETURN p, rel, o LIMIT 100;

©® Use Cmd + scroll to zoom

Don't show again

and

Overview

Node labels

Relationship types

Displaying 52 nodes, 60
relationships.

CONTAINS

Checking

* You can look at our primitive model with

® call db.schema.visualization

+ 1AM - -
onships

: "Order",indexes: [],constraints: ["“"Constraint(id=6, n
lqueorder', 'UNIQUENESS', schema=(:0rder {id}), ownedInde:
"Product", indexes: [],constraints: ["Co

d=4, name='uniqueproduct', type='UNIQUENESS', schema=(:Prod

- L4AViio
.

,
"
v

=
| re
|
+
| [
|
nst |
luct |
|
|

:CONTAINS {name: "“CONTAINS"]

s e caee cees cEee eEee elies = o

Cypher

e Selection and Projection:

e Match

° MATCH (p:Product)
RETURN p.productName, p.unitCost

ORDER BY p.unitCost DESC
LIMIT 10;

Cypher

e Use a WHERE clause for properties

MATCH (0:0rder) - [rel :CONTAINS]-> (p:Product)
WHERE o.shipCountry="Germany" AND
rel.quantityOrdered > 50

RETURN p, rel, o

LIMIT 100;

Cypher

e Can use String functions:

MATCH (0:0rder) - [rel :CONTAINS]—-> (p:Product) WHERE
p.productName Starts WITH "Uncle Bob"

RETURN p, rel, o

LIMIT 100;

MATCH(o:0rder)-[rel:CONTAINS]— (p:Product) -WHERE-p.productName-Starts -WIT >
p Lpo@® MIT-100;
Overview
Node labels
Relationship types
. (/,_;_\\} Displaying 30 nodes, 29
X 4 relationships.

Cypher

e Creating Nodes

® Create (myProduct:Product{productId:
543210, productName: "California
Raisins", unitCost: 2.35})

® Match (p:Product) WHERE p.productName
STARTS WITH "California" RETURN p;

Cypher

CREATE (myneworder :0rder
{orderDateTime:

datetime ("2024-07-31T12:13:00.000"),
orderID: 555550,

shipCountry: "India"})

Cypher

 Relationships:
e Need to find the nodes first with Match

* Then create a relationship between nodes

MATCH (rosie:Product{productName: "California
Raisins"}), (oscar:0rder{orderId:555550}) CREATE
(oscar) - [:CONTAINS{gquantityOrdered:20}]->(rosie) ;

Cypher

e Check existence

Match (0:0rder)-[r:CONTAINS]->(p:Product)
WHERE p.productName STARTS WITH "California"
RETURN o, p, r;

Cypher

e Queries:
e Nodes have round brackets ()

e Relationships have []

Match ()-[r:CONTAINS]|->()
WHERE r.quantityOrdered > 100
RETURN r;

Cypher

* Merge

e "MERGE either matches existing nodes and binds
them, or it creates new data and binds that. It’s like a
combination of MATCH and CREATE that additionally

allows you to specify what happens if the data was
matched or created.”

Aggregates

 Aggregates aggregate values:

e SUM

e MAX

e COUNT
e MIN

Aggregates

* Finding the product with highest quantity ordered
 [wo stages:

e Find maximum

MATCH (:0rder)-[r:CONTAINS]->(p:Product) WITH
max (r.quantityOrdered) as maximum RETURN maximum

* Find products

Aggregates

e Need to use COLLECT in order to find all products where
the maximum is reached

MATCH (o:0Order)-[r:CONTAINS]->(p:Product)
WITH max (r.quantityOrdered) AS mm

MATCH (0l:0rder)-[r:CONTAINS]->(pl:Product)
WHERE r.quantityOrdered = mm

RETURN COLLECT (pl.productName)

Aggregates

 Find the quantities of orders for products

MATCH (o0:0rder)-[r:CONTAINS]—->(p:Product)
RETURN p.productName, SUM(r.quantityOrdered)

Graph Distance

e Create nodes:

CREATE (n: Label {myID:1})

e Create node with id 5 twice

Graph Distanc

e Can use aloop with FOREACH

WITH [2,3,4,5,0,7,8] AS identifiers
FOREACH (value IN 1dentifiers | CREATE (:Label {myID : wvalue}));

Graph Distance

e Create edges: First Match left, then right node:

MATCH (a {myID:1}) MATCH (b {myID:2})
CREATE (a)-[:ADJ]->(b)

Graph Distance

* Jo check your progress:

Match (a)-[r]->(b)
Return a, r, b;

Graph Distance

e Can only deletes nodes without relationship

* We need to delete the nodes with myID 5

Overview

Node labels

Label (9)

& > Relationship types

Displaying 9 nodes, 16
relationships.

Graph Distance

e Delete with delete

MATCH (n:Label {myID: 3})-[r:ADJ]->(m: Label{myID: 5})
DELETE r;

o After deleting all relationships:

Match (n: Label {myID: 5})
DELETE n

Graph Distance

e Using FOREACH is tricky

* Need to use Merge instead of Match

e We use lists for tuples:

WITH [[2,4], [3,5]1, [4,5], [5,7]] as adjacencies
FOREACH (
palr IN adjacencies
MERGE (a {myID: pair]O0
MERGE (b {myID:pair[1]
CREATE (a)-—-[:ADJ]—->(b)

11)
})
) ;

Graph Distance

 Reachable in two hops from 1

Match ({myID:1})-[:ADJ]->()-[:ADJ]->(non :Label)
RETURN non.myID

Graph Distance

e Reachable in two hops from 1, but not in one
e Use * to indicate number of hops

e Use - to indicate bi-direction

MATCH (one:Label {myID:1})-[:ADJ*2]->(non)
WHERE NOT (one)-[:ADJ]-(non)
RETURN non.myI1D

Graph Distance

e Better use collect

MATCH (one:Label {myID:1})-[:ADJ*]—->(non) RETURN
Collect (non.myID)

e And even better: distinct

MATCH (one:Label {myID:1})-[:ADJ*]->(non)
RETURN Collect (distinct non.myID)

Group Quiz

* Create a list of all node labels in the graph.

Solution

MATCH (node) RETURN COLLECT (DISTINCT node.myID);

Netflix Database

 Download and unzip the netflix dataset from Kaggle:
netflix_titles.csv

e Create a new Neo4j project

 Place the csv file into the import folder

Netflix Database

* Now we relearn how to import data

e \We can use the csv headers to access values

LOAD CSV WITH HEADERS
FROM 'file:///netflix titles.csv' AS line
CREATE (
:Movie {
1d: line.show 1id,
title: line.title,
releaseYear: line.release year

Netflix Database

e Comma separated lists

WITH "United States, India, France"
AS countries as string
WITH split(countries as string, ",") AS
countries as list
UNWIND countries as list AS country name
RETURN trim(country name)

e UNWIND: Do something for every item in a list

Netflix Database

* We need to parse the director's list when importing

LOAD CSV WITH HEADERS FROM
'file:///netflix titles.csv' AS line
WITH split(line.director, ",") AS directors list
UNWIND directors list AS director name
MERGE (:Person {name: trim(director name) });

e MERGE: create when the node does not exist

Netflix Database

e MERGE can be problematic because we match exactly

 We can specify what we want to do depending on
whether we are modifying or creating a new node

MERGE (p:Person {name: "Bob"})
ON CREATE SET p.surname = "Cat"
ON MATCH SET p.birthDate = "1969-01-09"

Netflix Database

 We delete everything and put everything into a single
statement

LOAD CSV WITH HEADERS FROM
'file:///netflix titles.csv' AS line
CREATE (m:Movie
{1d: line.show 1d,
title: line.title,
releaseYear: line.release year})
WITH m, split(line.director, ",") as directors list
UNWIND directors list AS director name
MERGE (p:Person {name: director name})
MERGE (p)-[:Directed]-> (m)

