Algebraic and Logical Query Languages

Thomas Schwarz, SJ

Bags, Lists, Sets

- Bags are multi-sets
 - An element can appear more than once
- They are not sets
 - In a set, each element can appear at most once
- They are not lists
 - In a list, elements are indexed

Bags, Lists, Sets

- Why bags:
 - Union, seletion and projection can create the same tuple many times
 - Removing duplicates is difficult:
 - Either use a hash table or use sorting
 - Both of which are expensive in different ways

Bags, Lists, Sets

- Why bags:
 - For some temporary tables, bags are appropriate
 - Aggregation query like find the average salaries of all female employees hired in 2010, 2011, 2012
 - Form a temporary table with salary as only attribute
 - You <u>need</u> to keep values separate

- Union:
 - Just concatenate the two bags
 - If an element appears twice in one bag and thrice in the other, it will appear five times in the union

- Intersection
 - $R \cap S$:
 - Bags match each tuple with another tuple
 - If a tuple appears *n* times in *R* and *m* times in *S*, then it appears $\min(m, n)$ times in $R \cap S$.

- Difference:
 - Again, bags use one-to-one matching
 - Tuple appears *n* times in *R*
 - Tuple appears *m* times in *S*
 - Tuple appears max(0, n m) times in R S.
 - Each occurrence in S cancels out a single appearance in R

• In short: bags are different from sets

Projection of Bags

- Projection of bags:
 - Each tuple in the mother relation gives rise to one tuple in the projection

Selection of Bags

- Again: selection condition is applied to each tuple
- There is no duplicate elimination

Products of Bags

- Recall: Product assumes that attribute sets are different
- Each tuple of R is paired with each tuple of S

• Join tuple by tuple

R AB	SBC	$R \times S$	Α	R.B	S.B	С	$R \bowtie S$	Α	3 C	
12	2 3		1	2	2	3		1 2	23	
1 2	4 5		1	2	4	5		1 2	23	
	4 5		1	2	4	5				
			1	2	2	3				
			1	2	4	5				
			1	2	4	5				

 $R \bowtie_{R.B < S.B} S$

₃ S	Α	R.B	S.B	С
	1	2	2	3
	1	2	4	5
	1	2	4	5
	1	2	2	3
	1	2	4	5
	1	2	4	5

 $R \bowtie_{R.B < S.B} S$

<s.b< math=""> S</s.b<>	Α	R.B	S.B	С
	1	2	4	5
	1	2	4	5
	1	2	4	5
	1	2	4	5

Relational Algebra Operators

- Deduplication operator δ
- Aggregation operators such as sum, averages are used by grouping operators
- Grouping: Partitions tuples into groups
 - Usually, aggregation is then applied to each group
- Extended projections
 - Allow to create new attributes using arithmetic operations
- Sorting operator
- Outer join operator

Aggregations

- SUM
- AVG
- MIN, MAX
- COUNT
 - not necessarily distinct values in a column

Aggregation

- Example:
 - Find the aggregations of this table

Α	В
1	2
3	4
1	2
1	2

Aggregation

- Example:
 - Find the aggregations of this table

ΑΒ						
1 2	SUM(A)	=	6	SUM(B)	=	10
	AVG(A)	=	1.5	AVG(B)	=	2
34	MIN(A)	=	1	MIN(B)	=	2
12	MAX(A)	=	3	MAX(B)	=	4
1 2	COUNT (A)	=	4	COUNT (B)	=	4

Grouping

- Find the length of all movies produced by a certain studio
- Project onto studio, length
- Group by studioName

stu	udioName	movieLength				
	Disney	89				
	Disney	103				
	Disney	132				
		70				
	Disney	76				
	MGM	89				
	MGM	103				
	MGM	89				

Grouping

- Find the length of all movies produced by a certain studio
- Project onto studio, length
- Group by studioName
- Aggregate on movieLength

Grouping Operator

- $\gamma_{\mathsf{op}(A)}(R)$
 - A the <u>grouping attribute</u>
 - op the aggregation operator (e.g. AVG)
 - R the relation

Grouping operator

- $\gamma_{\mathsf{op}(A)}(R)$
 - Partition the tuples of *R* into groups according to values of *A*
 - For each group produce one tuple with
 - the grouping attributes' values for that group
 - the aggregation over all tuples of that group
- Generalize to several attributes

Grouping Operator

- Find all stars that appeared in at least three movies and the earliest year in which they appeared
- γ starName,MIN(year) \rightarrow minYear,COUNT(title) \rightarrow ctTitle(StarsIn)
- Result has starName, minYear, and ctTitle attributes
- Then select based on the last attribute: $ctTitle \geq 3$
- Finally project onto starName and minYear

Extended Projection Operator

- Classic projection $\pi_L(R)$
 - L set of attributes of R
- Extended projection $\pi_L(R)$
 - *L*
 - — single attributes (as before)
 - - expressions $x \rightarrow y$ renaming attribute x to y
 - — expressions $E \rightarrow z$ where E is an expression in terms of attributes and operators

Extended Projection Operator

• Example

 $\pi_{A,B+C\to X}(R)$

Extended Projection Operator

Α	В	С
0	1	2
0	1	2
3	4	5

$$\pi_{A,B+C\to X}(R)$$

Sorting Operator

- $\tau_L(R)$
 - *L* is a list of attributes
 - Result is R but ordered according to the list L

- Inner join leaves out certain tuples
- Outer join includes them with null values added

$R \bowtie^{o} S$	Α	В	С	D
	1	2	3	10
	1	2	3	11
	4	5	6	NULL
	7	8	9	NULL
	NULL	6	7	12

- Left outer join:
 - Only dangling tuples in the left relation are padded with NULL and added to the relation
- Right outer join:
 - Only dangling tuples in the right relation are padded with NUMM and added to the relation

R	Α	В	С	S	В	С	D	$R \bowtie_{l}^{o} S$	Α	В	С	D
	1	2	3		2	3	10		1	2	3	10
	4	5	6		2	3	11		1	2	3	11
	7	8	9		6	7	12		I	2	0	11
	•	C	C		C				4	5	6	NULL
									7	8	9	NULL

R	Α	В	С	S	В	С	D	$R \bowtie_{r}^{o} S$	Α	В	С	D
	1	2	3		2	3	10		1	2	3	10
	4	5	6		2	3	11		1	2	3	11
	7	8	9		6	7	12		NULL	6	7	12

• Can also be extended to theta joins