Database
Implementation

Thomas Schwarz, SJ

Memory Hierarchy

e Almost stable since the 1970s
e Cache — Fast, Expensive, Volatile
* DRAM memory — Fast, Expensive, Volatile

e Storage: HDD, SDD — Slow, Cheap, Non-volatile

e Tertiary Storage: offline HDD, Tape — Very slow, very
cheap, non-volatile

Memory Hierarchy

e Database data is stored:
e Usually in storage

* Accessed not using the file system, but by direct
block access

e Sometimes in virtual memory (Main Memory
Databases)

Memory Hierarchy

e Volatility implies:
* All changes to a database need to be logged
e |f there is a loss of power:
e Database needs to be in a consistent state

 Use the log to rebuild the consistent state from
a snapshot and a log

 Data needs to be transferred between storage and
CPU

Memory Hierarchy

e Durability with fallible components
e All storage systems are fallible

e Use mirroring or redundant storage

Memory Hierarchy

e Memory hierarchy might be in for a big change

e Non-volatile memories

4

Faster

SRAM
DRAM
Alongside . .
- B memory A perspective on NVRAM technology for future computing system,
§ NVRAM Speed ~1E3x K. Hoya, K. Hatsadu,K. Tsuchida, Y. Watanabe, Y. Shirota, T. Kanai
vy Alongside
storage

. NAND
Density ~1E2x o .

—
Density Larger

Phase Change Memories

* Phase change material is in
crystalline (low resistance) or
amorphous (high resistance) state

 Jo change phase:

e Short burst of current leads to
amorphous state

* Longer, but lower burst of
current leads to crystalline state

Top electrode

Phase change material

Heater Insulator

Bottom electrode

Phase Change Memories

e Almost as fast as RAM
* Denser than Flash —> Will become cheaper

e On the market as Intel Optane

Memory Hierarchy

 With new technologies
* Non-volatile memories might be:
* Replacing /supplementing memory
* Replacing / supplementing storage
* Replace both with a single layer

e with large implications for OS design and
database design

Optimizing disk access

e Disk access:
e Move actuator over track — seek time

 Walit for block to appear under track — rotation time

e Transfer data == transfer time

actuator

Optimizing disk access

* Avoid seek times:
e Keeping table blocks together on the track

e Streaming bandwidth ~ 200 MB/sec

e Store most frequently access data in the middle tracks of
the platter

* Access data track by track (elevator algorithm)
* Hide access times:
* Prefetching and large scale buffering

e Example: Writes can be delayed and ordered

Optimizing disk access

e SSD:
* No mechanical parts —> no seek times
e Can use parallelism

e But: need to use wear leveling because flash can only
be safely overwritten 5000 times

* Fortunately, this is handled internally

Database Implementation

 Access to data in storage:

 Blocks (HDD) and pages (SSD) have logical block
address

* Translation between logical block address and
physical block address is done within the device

Database Implementation

* Jo access storage:
* Allocate space for storage blocks in memory
e Prefetch for reading

e Have a write-back queue

Index Structures

Index Data Structures

e Structures for one-dimensional data
* Linear or Extensible Hashing

e B -tree/ B+ - tree for ordered indices

e Structures for multi-dimensional data

B-Trees

e B-trees: In memory data structure for CRUD and range
queries

e Balanced Tree

* Each node can have between d and 2d keys with the
exception of the root

e Each node consists of a sequence of node pointer, key,
node pointer, key, ..., key, node pointer

e Tree Is ordered.

* All keys in a child are between the keys adjacent to
the node pointer

B-Trees

e Example: 2-3 tree: Each node has two or three children

B-Trees

 Read dog:

* | oad root, determine location of dog in relation to the
keys

* Follow middle pointer
 Follow pointer to the left

 Find “dog”

B-Trees

e Search for “auk” :

B-Trees

B-Trees

e Range Query c - |

e Determine location of ¢ and |

B-Trees

* Recursively enumerate all nodes between the lines
starting with root

B-trees

Capacity: With / levels, minimumof 1 +2 + 2%+ ... + 2!
nodes:

. 1(2l+1 . 1) keys
Maximumof 14+3+3%+ ... +3' nodes
° %(3l+1 _ 1) keys

B-trees

* |nserts:
 Determine where the key should be located in a leaf
* Insert into leaf node
| eaf node can now have too many nodes
 Take middle node and elevate it to the next higher level

 Which can cause more “splits”

B-trees

aaaaaa

CCCCCC

B-trees

B-trees

B-trees

* |nsert: Lock all nodes from root on down so that only one
process can operate on the nodes

* Tree only grows a new level by splitting the root

B-Trees

e Using only splits leads to skinny trees
 Better to make use of potential room in adjacent nodes
* |nsert “ewe”.
* Node elk-emu only has one true neighbor.

e Node kid does not count, It Is a cousin, not a
sibling

eeeeee

B-tree

* Promote elk. elk is guaranteed to come right after eft.

e Demote eft

\/

(d Ik)

b, bug ,\T / ogxe /olmrram*\

. J

/ \ / l o / l \
N e N
co cur oe eel emu ewe Ki en rat zho
J A J

B-tree

e |nsert eft into the leaf node

aaaaaa

e |eft rotate /M@ T ﬂ?

B-tree

Overflowing node has a [’
sibling to the left with

space

2 8°
Move left-most key up / il Q\
Lower left-most key o JEeeE) [en)

/&/’QT F q\
» /I;l

SEY (0T TS

bot

aaaaaa

bbbbbb

B-tree

/ doe *r klt \
v

IJ\ =z R
i S S

Cwamae || st || owmon e [ome | [eiow || msow]

Insert creates an overflowing node
Only one neighboring sibling, but that one is full
Split!

bbbbbb

Middle key moves up

koi owl

/P/\Q\ = Ry
VAR Y S

I

ape

[aws || wmes [e || owee | [weiow [e

Unfortunately, this gives another overflow
But this node has a right sibling not at full capacity

=

[

kel
N\ / \
ai } [ape J [auk bat J[bug cat][eel elk] [fly fox]

Right rotate:
Move “bot” up
Move “doe” down
Reattach nodes

o

e
3 | -
!

Move “bot” up
Move “doe” down
Reattach the dangling node

an

}/ o 1|

\ l / \

I s

“bot” had moved up
and replaced doe

The “emu” node needs
to receive one key and
one pointer

bot ¥ kit
doe
dangling

B-tree

e Deletes

e Usually restructuring not done because there is no
need

 Underflowing nodes will fill up with new inserts

B-tree

* Implementing deletion anyway:
 Can only remove keys from leaves

e |f a delete causes an underflow, try a rotate into the
underflowing node

e |f this is not possible, then merge with a sibling
* A merge is the opposite of a split
 This can create an underflow in the parent node

* Again, first try rotate, then do a merge

B-tree

Delete “kit”

/ bOt 1 klt \

e

| s :
i // x E/ 3

(=

[awom || meea [ewen [we | [wiow | men

Delete “kit”

“kit” is in an interior node.
Exchange it with the key in the leave
immediately before
“fox”

After interchanging “fox” and “kit”, can delete “kit”

Now delete “fox”

B-tree

/ bOt ! fox \

o doe/femU\ } .
// X 7 E/ 3

I e [wwsa [weea [ewa [ow][wiow [amew

Step 1: Find the key. If it is not in a leaf
Step 2: Determine the key just before it, necessarily in a leaf
Step 3: Interchange the two keys

/ / S /

N /
i [we [aken || weea [ewac |[e][@ow][s

Step 4: Remove the key now from a leaf

This causes an underflow
Remedy the underflow by right rotating from the sibling

Everything is now in order

Now delete fly

Switch “fly” with “emu”
remove “fly” from the leaf
Again: underflow

Cannot left-rotate: There is no left sibling
Cannot right-rotate: The right sibling has only one key
Need to merge: Combine the two nodes by bringing down “elk”

B-tree

We can merge the two nodes because
the number of keys combined is less than 2 k

Del
ete “emu”

Switch predecessor, then delete from node

B-tree

Now delete “elk”

Results in an underflow

bot % eel
\4
oe

=] (=) |

Results in an underflow
But can rotate a key into the
underflowing node

Result after left-rotation

B-tree

“Now delete “eel”

J e] = J

Interchange “eel” with its predecessor
Delete “eel” from leaf:
Underflow

Need to merge

Merge results in another underflow
Use right rotate
(though merge with right sibling
is possible)

“ass” goes up, “bot” goes down
One node is reattached

Reattach node

In real life

 Use B+ tree for better access with block storage
e Data pointers / data are only in the leaf nodes
* |nterior nodes only have keys as signals

* Link leaf nodes for faster range queries.

B+ Tree

cow# eft

doe dzo
o

T

eel eft

a kid Fpen =
-

Y

orc pen

pig pup }

B+ Tree

* Real life B+ trees:
* Interior nodes have many more keys (e.g. 100)
* | eaf nodes have as much data as they can keep
* Need few levels:

 Fast lookup

Hashing

 Basic idea: Place records in a bucket defined by the hash
value of the key

e Hash value: Pseudo-random number
* Extensible hashing:

e Number of buckets increases with number of records
through bucket splits

 Extendible hashing (Fegan): Update a data structure
in order to find out which buckets are split

e Linear Hashing (Litwin): Buckets split in order

Linear Hashing

Linear Hashing

* Extensible Hashing:
 Uses a lot of metadata to reflect history of splitting
 But only splits buckets when they are needed
e Linear Hashing
e Splits buckets in a predefined order
* Minimal meta-data

e Sounds like a horrible idea, but ...

Linear Hashing

* Assume a hash function that creates a large string of bits

 We start using these bits as we extend the address
space

e Start out with a single bucket, Bucket O

e All items are located in Bucket O

Bucket O:

19, 28, 33

ltems with keys 19, 28, 33

Linear Hashing

* Eventually, this bucket will overtlow
e E.g. if the load factor is more than 2
 Bucket O splits
e All items in Bucket O are rehashed:

e Use the last bit in order to determine whether the
item goes into Bucket O or Bucket 1

* Addressis h(c) =c (mod 2)

Linear Hashing

o After the split, the hash table has two buckets:

Bucket O: Bucket1:

28 19, 33

o After more insertions, the load factor again exceeds 2

Bucket O: Bucket1:

28, 40 11,19, 33

Linear Hashing

 Again, the bucket splits.
e But it has to be Bucket 0

Bucket O: Bucket1: Bucket 2:

28, 40 11,19, 33

* For the rehashing, we now use two bits, I.e.
h,(c) =c (mod 4)

e But only for those items in Bucket O

Linear Hashing

o After some more insertions, Bucket 1 will split

Bucket 0O: Bucket1: Bucket 2:

28, 40

11,19, 33, 35

6

Bucket O:

28, 40

Bucket1:

33

Bucket 2:

Bucket 3:

11,19, 35

Linear Hashing

 The state of a linear hash table is described by the
number /N of buckets

e The level [is the number of bits that are being used to
calculate the hash

* The split pointer § points to the next bucket to be split

* The relationship is
N=2+5

e This is unique, since always § < 2!

Linear Hashing

e Addressing function

* The address of an item with key ¢ is calculated by

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)
return a

e This reflects the fact that we use more bits for buckets
that are already split

Linear Hashtable Evolution

N=1= 20+O def address(c) :

a = hash(c) % 2**1
Number of buckets: 1 1f a < s:
Split pointer: O a = hash(c) s 2**(1+1)
TLevel: 0 return a

Bucket O:

19, 28, 33

Linear Hashtable Evolution

N=2=21+O def address(c) :
a = hash(c) % 2**1
Number of buckets: 2 1f a < s:
Split pointer: O a = hash(c) % 2**(1+1)
Level: 1 return a
Bucket O: Bucket1:
28 19, 33

Add 1tems with hashes 40 and 11
This gives an overflow and we split Bucket 0

Linear Hashtable Evolution

N=3 =21+1 def address(c):
a = hash(c) % 2**1
Number of buckets: 3 1f a < s:
Split pointer: 1 a = hash(c) % 2**(1l+1)
Level: 1 return a
Bucket 0: Bucket1:
08, 40 11,19, 33 split Bucket O
Create Bucket 2
Use new hash function on items in BRBucket 0
Bucket O: Bucket1: Bucket 2: No 1tems were moved

28, 40 11,19, 33

Linear Hashtable Evolution

N=23 =21+1 def address (c):
a = hash(c) % 2**1

Number of buckets: 3 1f a < s:
Split pointer: 1 a = hash(c) s 2**(1+1)
Level: 1 return a

Bucket 0: Bucket1: Bucket 2: Add items 6, 35

28, 40 11,19, 33

Bucket O: Bucket1: Bucket 2: Because of overflow, we split

28, 40 11, 19, 33, 35 6 Bucket 1

Linear Hashtable Evolution

N=4= 22 + 0 def address(c) :

a = hash(c) % 2**1

Number of buckets: 4 1f a < s:
Split pointer: O a = hash(c) % 2**(1+1)

TLevel: 2 return a
Bucket O: Bucket1: Bucket 2:
28, 40 11, 19, 33, 35 6
Bucket 0O: Bucket1: Bucket 2: Bucket 3:
28, 40 33 11, 19, 35

Linear Hashtable Evolution

N=4=2*+0

Number of buckets: 4
Split pointer: O

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)

Level: 2 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Now add keys 8, 49
28, 40 33 6 11,19, 35
Bucket O; Bucketi: Bucket 2: Bucket 3: C re ate S an over f l OW !
28, 40, 8 33, 49 6 11,19, 35 Need to split!

Linear Hashtable Evolution

N=5=2%+1

Number of buckets: 1
Split pointer: 1

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)

Level: 2 return a
Bucket O: Bucket1: Bucket 2: Bucket 3:
28, 40, 8 33, 49 6 11, 19, 35
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Create Bucket 4.
40, 8 33, 49 6 11, 19, 35 28 Rehash Bucket 0.

Linear Hashtable Evolution

N=5=2%+1

Number of buckets: 5
Split pointer: 1

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)

Level: return a
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Add keys 9, 42
40, 8 33, 49 6 11,19, 35 28
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Creates an overflow!
40, 8 9, 33, 49 6, 42 11,19, 35 28 Need to split!

Linear Hashtable Evolution

N=6=2%+2

def address (c) :

a = hash(c) % 2**1

Number of buckets: 1 1f a < s:
Split pointer: 2 a = hash(c) % 2**(1+1)
Level: return a
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4:
40, 8 9, 33, 49 6, 42 11, 19, 35 28 Split
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 42 11, 19, 35 28

No 1tem actually moved, but average load factor 1s now
agaln under 2.

Linear Hashtable Evolution

N=6=2%+2

Number of buckets: 6
Split pointer: 2

def address (c) :
a = hash (c)

1if a < s:

o 2%%]

a = hash(c) % 2**(1+1)

return a

Level: 2
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 42 11,19, 35 28
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 10, 42 11, 19, 35 28 5

add 5,10

Linear Hashtable Evolution

N=7=2%+73

def address (c) :
a = hash(c) % 2**1

Number of buckets: 7 1f a < s:
Split pointer: a = hash(c) % 2**(1+1)
Level: 2 return a
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5:
40, 8 9, 33, 49 6, 10, 42 11, 19, 35 28 5
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6:
40, 8 9, 33, 49 10, 42 11,19, 35 28 5 6

Linear Hashtable Evolution

N=7=22+3 def address(c) :

a = hash(c) % 2**1

Number of buckets: 7 1f a < s:
Split pointer: 3 a = hash(c) % 2**(1+1)

Level: 2 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: add 92, 74
40, 8 9, 33, 49 10, 42 11,19, 35 28 5 6
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6:
40, 8 9, 33, 49 10, 42, 74 11,19, 35 28, 92 5 6

Linear Hashtable Evolution

N=8=2+4+0

def address (c) :
a = hash(c) % 2**1

Number of buckets: 8 1f a < s:
' ' - O
Split pointer: O a = hash(c) % 2**(1+1)
Level: 3 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6:
40, 8 9, 33, 49 10, 42, 74 11,19, 35 28, 92 5 6
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
40, 8 9, 33, 49 10, 42, 74 11, 19, 35 28, 92 5 6

Linear Hashtable Evolution

N=8=23+O def address(c) :
a = hash(c) % 2**1
1f a < s:

a = hash(c) % 2**(1+1)

Number of buckets: 8
Split pointer: 0

TLLevel: 3 return a
add 13, 54
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
40, 8 9, 33, 49 10, 42,74 11,19, 35 28, 92 5 6
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
9, 33, 49 10, 42,74 11,19, 35 28, 92 5,13 6, 54

Linear Hashtable Evolution

N=9=23+1

Number of buckets:
Split pointer: 1
Level: 3

9

def address(c) :
a = hash(c) % 2**1
1f a < s:
a = hash(c) % 2**(1+1)
return a

Bucket 0O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7:
9, 33, 49 10, 42, 74 11,19, 35 28, 92 5,13 6, 54

Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8:
9, 33, 49 10, 42, 74 11,19, 35 28, 92 5,13 6, 54 40, 8

Linear Hashtable Evolution

N=9=23+1

def address (c) :

a = hash(c) % 2**1
Number of buckets: 9 1f a < s:
Split pointer: 1 a = hash(c) 2x*(1+1)
Level: 3 return a
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8: add 1,
9, 33, 49 10,42, 74 11,19, 35 28, 92 5,13 6, 54 40, 8
Bucket 0O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8:
1,9, 33, 49, 10, 42, 74 11,19, 35 28, 92 5,13 6, 54 40, 8

81

81

Linear Hashtable Evolution

N=10=2+2

Number of buckets: 10
Split poilnter:

a:

def address (c)
hash (c)

1f a < s:
hash (c)
return a

a

o 2%%]

2*x* (1+1)

Level: 3
Bucket 0: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8: Bucket 9:
1, 33, 49, 81 10, 42, 74 11, 19, 35, 67, 28, 92 5,13 6, 54 39 40, 8 9
99
Bucket O: Bucket1: Bucket 2: Bucket 3: Bucket 4: Bucket 5: Bucket 6: Bucket 7: Bucket 8: Bucket 9: Bucket 10:
1, 33, 49, 81 11, 19, 35, 67, 28, 92 5,13 6, 54 39 40, 8 9 10, 42, 74

99

Linear Hashing

e Observations:
 Buckets split in fixed order

¢ 0,0,1,0,1,2,3,0,1,2,3,4,5,6,7,0,1,2, ..., 15,
0, ...

e Address calculation is modulo 21, l.e. the | least
significant bits

e Buckets 0, 1, ..., s-1 and 2™/, 2**I+1, ... N-1 are
already split, they have on average half the size of
the buckets s, s+1, ..., 2™.

Linear Hashing

e Observations:

* An overflowing bucket is not necessarily split
immediately

e Sometimes, a split leaves all keys in the splitting bucket
or moves them all to the new bucket

* On average, a bucket will have a items in them

Grid Files

Grid Files

* Many data structures support multi-dimensional indexing
* Works up to moderate dimensions

e Geometry of large dimensional spaces is weird

KD Trees

» KD-trees are binary trees where each node is a point in a
k-dimensional space

 Each point divides the space according to a hyperplane

KD Trees

 [Two-dimensional example
e |nitially, the whole plane is in a single bucket
* Then we split the bucket along the y-axis,

e creating two halves

x<10 x>10

KD Trees

e As we insert more records, we want to subdivide the
buckets

x<10, y>10 x>10, y>10

x<10,y<10 x>10, y<10

KD-Tree

 The separating axis switches from vertical to horizontal

KD-Tree

 We select the splitting plane such that it divides the
current set of points into halves . *

KD-Trees

* *
#
L. *
* *
*
*
*
% #
#
*
*
* * *
* *
#
*
*
* *
*
* *
% #
* * %«
*
*
% *
*
#
* #
#
*
*

KD-Trees

*
% *
%
* *
* " *
* %
*
& %
*
* * ®
" *
*
* * *
* * *
%
* *
*
* *
*
* *
% *
% % % * * * %
*
* * *
% % * * %
" %
* * *
% *
*
® *
*
* * *
* * %
%*
* *
*
*
%
* %
*
*

KD-Trees

KD-Trees

* This is only one example of many multi-dimensional data
structures

Physical Query Plan
Execution

Overview

Query Optimization

SQL query

Parse query

query
expression
tree

Select
logical
query plan

logical
query plan tree

i
Select

physical
plan

physical
query plan tree

v

Execute
plan

Physical Query Plan Costs

e Usually completely dominated by the cost of I/0

 Will change with changes in the memory hierarchy

Scanning Tables

 Table-scan

 Relation is stored in an area of storage

* Fetch blocks one by one (using prefetching)
* |ndex-scan

e |f the relation has an index

* Index has LBAs of all blocks storing tuples (using
prefetching)

Scanning Tables

e Sort-scan:
* As we read a table into main memory:
e Cansortit
e Using various data structures
e Sometimes a by-product of the table scan

e E.g.: Index scan using a B-tree

lterators

Records can be clustered or scattered
 This can make performance prediction difficult
Use iterators to implement table scanning:

e Open, Next, Close operations

One Pass Operations

e Selection and projection just need to look at one record at
a time

Table

Projection / j/‘
Input buffer }—b Selection —>[Output buffer

One Pass Operations

e Can often be combined with full or partial duplicate
elimination

o Keep seen records in efficient data structure

>

Projection /
Input buffer }—b Selection —>(Output buffer

Seen before?

Hash
Table

Join Implementation

e Join (on equality) is the most important database
operation for performance purposes

One Pass Join
Implementation

e | oad smaller table into a data structure

 Read larger table row by row, compare with data structure

R
N
Ty Table 2
Table 1
Read smaller _ _
]—-’V Table and Join usin g
Input buffer place in Data Input buffer j——-’ 5 Ordered —p[Output buffer j
Structure ata Structure

Ordered Data
Structure

rows of
Table 1

One and a half pass join
Implementation

e Nested Loop Joins

e |dea: If both tables are too big for a one pass, break
one table into smaller pieces

 Can be done tuple by tuple
* Or block by block

One and a half pass join
Implementation

R
N
g/

Y
N

Table 2

eeeeeeeeeee

d

[Input buffer

Join using

Sorting in Two Passes

* Break big table into blocks

e Sort each block

 Merge-sort to generate single ordered table:

e Point to beginning tuple in each block

 Write the smallest tuple pointed to into the sorted table

e Advance pointer

R
N

Table 1

4

Break table
into blocks
and sort them

4

Use merge-sort
to order table

TN
N

Table 1
sorted

e

Two Pass Operations

e Same trick can be used for:
e duplicate elimination

e grouping and aggregation

Join Implementations

e Sort-merge join
 Sort both tables by the joining predicate
e Create two cursors (pointers) into each table
 Advance the cursors step by step:

* emitting a new tuple whenever the cursors point to a
row with the same value for the join attribute

Join Implementations

TABLE 1

TABLE 2

3

8

1

1

4

3

12

20

order

16

4

8

19

10

2

6

3

11

12

3

We join on the white attribute

TABLE 1

TABLE 2 JOIN (TABLE 1, TABLE 2)

||| |||l —

|| ||WI|wWw[fN]||—

AW || W || W]l —

11

20

12

12

16

merge-join via pointers into the tables

We sort both tables on the Create two cursors

white attribute

into the sorted tables.
Whenever the cursor
points to rows with
the same white
attribute value, emit a
new row. Careful if
values repeat.

Join Implementations

* |ndex join
e Can create an index on both tables
 Unless index already exists

 Use the index as the target for each cursor

Join Implementations

Index Table 1 TABLE 1

r 3

1 feasssszszpastisassaaais » 1
3 - 4
4) 12
o) 3 16
8

1] : 10
12| A
16 ' A »
h 2

3

TABLE 2

20

JOIN (TABLE 1, TABLE 2)

.......................

..................

Join Implementations

* Hash Join
e Select the smaller table as the build side
e Hash the (addresses of the) tuples in the build side
 Go through the other (the probe) table row by row

e For each value, look up the hash bucket of the
attribute value and see whether you need to create
a row of the join

Join Implementations

TABLE 1 TABLE 2
3 « [] Ts) Table 2 is hashed
1 .. 20
; p For each row in Table 1,
i we join with the rows in
12 L . the corresponding hash
16 ‘ 1 bUCket
8 ’,"
10 Here, the hash function
- o g Is attribute value modulo
é 5 4.
11
12
3 e N
. .
3
19

Join Implementations

* |f neither table fits into memory

* Need a two pass algorithm

e Example: R, S have 5,000 and 10,000 blocks each

* We have a ridiculously low number of 101 blocks
IN memory

Join Implementation

e |dea:
* We create hash buckets for each table independently
 We read a block from the table
 Each record in the table is put in one bucket
* For each bucket, we keep one block in memory

e |f block is full, we move the block to disk and open
up a fresh one

Join Implementation

llllll

i i

100 blocks

Main Memory

One Pass Hashing for a Relational Table

Join Implementation

* The number of buckets is limited by the number of blocks
IN main memory

e This method reads all blocks of a table
e and writes the same number of blocks back

e unless there is a projection or selection executed
simultaneously

Join Implementation

e Tojoin Rand S:
e (Create hash table with 100 buckets each

e Costs 2 X 5000 + 2 x 10000 = 30000 10

* A bucket of R uses approximately 50 blocks

e Bring in one block of the corresponding bucket from S
e (Calculate the join

* This needs only space for 52 blocks

e Adds 15000 IO for reading the hashed versions of R and S

e Needs also write the result

Combined Operations

Pipelining vs.
Materialization

e Combination: Can do some tuple based operations
together: e.g. selection and projection for a single table

 Materialization: Write results of an operation into an
intermediate table

e Pipelining: Moving results from one operation to inputs of
another operation

Pipelining vs.
Materialization

e Example for pipelining: Calculate
(R(w,x) X S(x,y)) X T(y, 2)

e Assume: R has 5,000 blocks, S and T 10,000 blocks
 Both joins will be implemented as hash joins

* onhe pass or two pass
 We only have 102 block buffers available

 This is a very low number

Pipelining vs.
Materialization

e Tojoin Rand S:

* Neither table fits into main memory, so we / \
need a two-pass hash-join

e Join R and §in 45000 + £ 1/0 / \ ¥ioo0o
e If kis small (<45 blocks), keep result in MM R(W;(OOO 10000

 Materialization: use a 1-pass hash join with

T: kK + 10000 I/0

* Pipeline (because the second pass of the
join of R and S does not need all the
space) we save 2k 1/0

Pipelining vs.

Materialization

e If the output of the join of R X S does not fit in MM, we
can still pipeline with a trick

The second phase of the join of R IX| S leaves 50
blocks of MM space unused

We use this space to hash R X § into 50 buckets as
before

We assume that we already hashed 7 into 50
buckets.

We then hash-join R IX{ S and T

e This will work if a bucket of R X § fits into 100
blocks

e Thus, R X S should fit into 5000 blocks

/ N
N T

5 OOO 10 000

Costs:
4500010 forR X S
k 10 to store hashed

version of R X S
20000 10 to generate
hashed version of U

k + 10000 to join U with
RIS
Total: 75000 + 2k

Pipelining vs.
Materialization

e What happens if R XIS has k > 5000 blocks?

In this case, pipelining can be replaced with
materialization

Calculate R X S using 45000 + & 1/0, storing the
result on the disk

Use 1 as the build table, using 100 buckets, costing
20000 1/0

Now join with R X S, costing another 10000 + 2k 1/0s

Query Optimization

Basics

* Queries can be expressed as an operator tree

Index Nested Loop

/ -
Merge-Join
/A.x = B.y\ Index Scan C
Sort Sort

Table Scan A Table Scan B

Basics

Any query can be expressed as many equivalent
algebraic representation

Any algebraic representation can be represented by many
operator trees

The throughput / response time of any execution of an
operator tree can differ widely from timings for other
operator trees

Each operator tree is a different "query plan”’

Basics

e Query optimization needs
A "search space"
e Set of equivalent query plans

* An enumeration algorithm to search the search space

e A cost estimation technique
* Needs to deal with possibility for parallelism

 This is more important for SSD than for HDD

Basics

e SPJ (Select Project Join) queries

e Standard SQL query consisting of select, project, and
join operations

Basics

(A B)=<C) > D (A B) > (C'xa D)

ANB/ ™~ / \
i AN N
Linear Join Bushy Join

 The resulting queries are equivalent
e EXxecution times can vary considerably
 Dynamic Programming approach

e Principle of Optimality: If a subexpression is optimal, it
Is also best for the calculation of the whole expression

Basics

* Principle of optimality

e |f the execution of the
whole tree is optimal

)
_/

O

e then the execution of a
subtree is also optimal

)
_/

O

Query Cost Evaluation

 Query plan costs depend on the size of the intermediate
results

* For cost-estimation:
 Use heuristics
» Make assumptions on probability distributions

e Use statistics by using samples

