No SQL Databases

Thomas Schwarz, SJ

Relational Model
Shortcomings

Greater Scalability
 High write throughput / very large datasets

Independence from few vendors — Move towards Open
Source

Need for different query operations

Restrictiveness of relational schemas

NoSQL History

e 2006: Bigtable: distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers

 Bigtable uses a single key

NoSQL History

e 2007 Dynamo
* Primary key
 Uses consistent hashing to partition and distribute data

* A global, distributed key-value store

NoSQL History

e 2007 - 2009: Riak, MongoDB, HBase, Accumulo,
Hypertable, Redis, Cassandra, Neo4;

 Non-relational databases using different ideas

e Access without SQL

NoSQL characteristics

e Schema agnostic
* Non-relational
e Commodity hardware

e Highly distributable

NoSQL Characteristics

e Schema redesign overhead
e Example Classic-Models:

* You suddenly need to restructure so that you can
split up an order

* |f you change the scheme you have old and new
data

e QOften discover new relationships after working with
data for a while

NoSQL Characteristics

 Unstructured Data Explosion
e Combining from incompatible sources

e Sparse data

NoSQL Characteristics

 [ransactions are expensive
e World-wide 24/7/365.25 data

* Use eventual consistency

Data at Very Large Scale
Example

 Hush: HBase URL Shortener
e Hand a URL to a Shortener service
e Get a shorter URL back
 E.g. to use In twitter messages
e Shortener provides counter for each shortened URLs
e "Vanity URL" that incorporate specific domain names
* Need to maintain users
* |og in to create short URLs
e track existing URLs

e see reports for daily, weekly, or monthly usage

Data at Very Large Scale
Example

e Data is too large to store at a single server

e But:
e Limited need for transactions

* Importance of high throughput writes and reads

Data at Very Large Scale
Example

e Columnar Layout

* A relational database strategy often adopted in No-SQL
databases

* |nstead of storing data in tuples

e Store by attribute

Data at Very Large Scale
Example

e Forlarge HUSH:

e (Can use a relational database

e Use normalization and obtain a scheme

Data at Very Large Scale

* Principles of Denormalization, Duplication, Intelligent Keys
 Denormalize by duplicating data in more than one table
* Avoids aggregation at read time

* Pre-materialize required views

Data at Very Large Scale

e Example: HBase URL Shortener (Hush)

e user(id, username, credentials, rules, first_name,
last_name, email) with unique username constraint

e url(id, url, refShortlD, title, description, content)

e shorturl(id, userlD, urllD, shortID, refShortID,
description) with unique shortlD and F.K. userlD and
urliD

e click(id, datestamp, shortlD, category, dimension,
counter) with F.K. short|D

Data at Very Large Scale

 Purpose: maps long URLs to short URLs

USER

SHORTURL

CLICK

PK

id

PK

id

PK

id

IDX

username
credentials
roles
first_name
last_name
email

FK1
FK2
IDX

userlD
urllD
short|D
refShortID

FK1

datestamp
shortID
category
dimension
counter

URL

PK

id

url
refShortID
title
description
content

Data at Very Large Scale

e Short URL can be given to others

e This is translated to the full URL

USER SHORTURL CLICK
PK [id PK [id < PK [id
IDX | username <«—|FK1 |userlD datestamp
credentials — FK2 |[urllD —| FK1 | shortID
roles IDX | shortlD category
first_name refShortID dimension
last_name counter
email
URL
— PK |id
url
refShortlD
title
description
content

Data at Very Large Scale

 Each click is tracked, which aggregates to weekly usage
numbers

USER SHORTURL CLICK
PK [id PK [id < PK [id
IDX | username <«—|FK1 |userlD datestamp
credentials — FK2 |[urllD —| FK1 | shortID
roles IDX | shortlD category
first_name refShortID dimension
last_name counter
email
URL
— PK |id
url
refShortlD
title
description
content

Data at Very Large Scale

e All these operations require joins

USER SHORTURL CLICK
PK [id PK [id < PK [id
IDX | username <«—|FK1 |userlD datestamp
credentials — FK2 |[urllD —| FK1 | shortID
roles IDX | shortlD category
first_name refShortID dimension
last_name counter
email
URL
— PK |id
url
refShortlD
title
description
content

Data at Very Large Scale

e Bandwidth problem
 Especially for joins

* Need to store data in joins together, not look them up
separately

e But can relax on the consistency model:

e No need to serialize short URL creation or URL
translations or have atomic updates

* Might be able to relax integrity constraints

e Statistics need to be approximately correct

Data at Very Large Scale

 Denormalization:
 Key idea: Store data together that is likely to be joined
e Means:
e massive duplication of data
* relaxed consistency needed

e but faster reads / writes

Data at Very Large Scale

o Key-value database

 Every record is a key-value pair

o Extremely simple lookup: very high performance

* Limited complexity

* A large set of tools predating no-sqgl databases in
general

 Redis, Amazon DynamoDB, Microsoft Azure
CosmosDB, Memcached

Data at Very Large Scale

 Wide column stores
* names and format of columns can vary from row to row
* with potentially millions of different attributes
* [wo-dimensional key-value store:
* Access via row and attributes
e Schema-free
* Google's BigTable is the original

* Apache Cassandra, Microsoft Azure Cosmos DB, Apache
HBase

Data at Very Large Scale

e Example:

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
1 l I T l l
R I S B - __Y____ 1]
| "ol | | . |
| T <ntl > (- { " "
"com.cnn.www" — > —=fimtsgt (L "CNN" = tg CNN.com" (= tg
| "<htmi>" -t — L]

Data at Very Large Scale

e Columnar:
 Families of columns are stored together

e Good for aggregation questions

Data at Very Large Scale

e Columnar:
e Good for high write performance
e (Good for colocated data access

e Examples: Cassandra, Apache HBase

Data at Very Large Scale

* Document stores
e Schema-free:
* Different records can have different columns
* Types of values can be different
 Columns can have more than one value
* Records can have a nested structure
e XML, JSON databases

* MongoDB, Couchbase, Amazon DynamoDB, Databricks,
Microsoft Azure Cosmos DB

Data at Very Large Scale

 Graph databases
* Navigational database successor:

* information about data interconnectivity or topology as
important as data itself

* Triple:
* A single fact represented by

* subject Adam likes cheese

]] Subject Property Value
e property / relationship

e value

Alternatives to Relational
Schemes: XML

e Data is often structured hierarchically

Invoice = {
date : "2008-05-24"
invoiceNumber :

InvoiceItems : {

Item : {
description : "Wool Paddock Shet Ret Double Bound Yellow 4'0"
quantity :
unitPrice :

}

Item : {
description : "Wool Race Roller and Breastplate Red Double"
quantity :
unitPrice :

}

Item : {
description : "Paddock Jacket Red Size Medium Inc Embroidery"
quantity :
unitPrice :

Alternatives to Relational
Schemes: XML

e As an XML document

< >
< >421</ >
< >2008-05-24</ >
< >
< >
< >Wool Paddock Shet Ret Double Bound Yellow 4'0"</ >
< >1</ >
< >105.00</ >
</ >
< >
< >Wool Race Roller and Breastplate Red Double</ >
< >1</ >
< >75.00</ >
</ >
< >
< >Paddock Jacket Red Size Medium Inc Embroidery</ >
< >2</ >
< >67.50</ >
</ >
</ >

Alternatives to Relational
Schemes: XML

 Advantage of XML
e Faster to scan all data
* No joins
 Disadvantages of XML
 Each record contains the full or an abbreviated scheme

e Each query needs to select from big chunks of data

Alternatives to Relational
Schemes: JSON

e JSON — JavaScript Object Notation
e Human-readable

 Organized as key-value pairs

Alternatives to Relational
Schemes: JSON

e JSON record example "firstName": "John',

"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode"”: "10021-3100"

b
"phoneNumbers": |
{
lltypell: llhomell’
"number": "212 555-1234"
b
{
"type": "office",
"number": "646 555-4567"
b
{
"type": "mobile",
"number": "123 456-7890"
}

1,

"children": [],
"spouse”: null

}

Alternatives to Relational
Schemes: JSON

e JSON can use a schema (type definition)

e JSON was first used for data transmission as a data
serialization format

Alternatives to Relational
Schemes: JSON

e Many-to-One and Many-to-Many Relationships
* Modeled by the same value for the same key

e Problem: Need to standardize / internationalize
these values

e Using id-s instead of plain text to avoid problems

* Table of id-s reintroduce a relational scheme through
a backdoor

Alternatives to Relational
Schemes: JSON

e Resumé
e Users present people
* People have jobs, education, and recommenders

e But they share jobs, companies, degrees, schools,
recommenders

 Should they stay text strings or become entities?
e Latter allows to add information to all resumés

e |f recommenders get a photo, then all resumés should be
updated with this photo, so better to make recommenders
entities

Alternatives to Relational
Schemes: JSON

 Data has a tendency to become less-join free

Document Databases

* Records are documents
* Encode in
e XML
e YAML
e JSON
e BSON (Mongo DB)

e CRUD operations: create, read, update, delete

Document Databases

 Enforcing schema
e Most document databases do not enforce schema
e —> “Schemaless”
e |nreality: “Schema on Read”
e RDBMS would then use “Schema on Write”

 Allows schema updates in simple form

Document Databases

e Schema on Read:
 Advantages:
e Data might come from external sources
 Disadvantages:

 No data checking

Document Databases

* Document database support

* Most commercial database systems now support XML
databases

Query Languages

e Documents lend themselves to object-oriented querying
* |mperative code

e SQL is declarative:
* Programmer explains a solution
e System figures out the best way to find the solution

 Use declarative query languages for document databases

Query Languages

e Map-Reduce (neither declarative nor imperative):
 Consists of only two pieces of code
e Mapping: Selecting from Documents

* Reducing: Take selection elements and operate on
them

Alternatives to Relational
Schemes: Graph Models

e Graphs consists of vertices and edges
e Example:

 Social graphs: vertices are people and edges are
relationships such “knows”

* Web graph: vertices are pages and edges are links

 Road networks: vertices are places and edges are
connections

Alternatives to Relational
Schemes: Graph Models

e Relational Database hides semantic relationships

User
UserlD | User | Address Phone Email Alternate
Alice | 123Foo5t. | 12345678 | alice@example.org | alice@neodj.ong

2 Bob | 456 Bar Awe bob@example.org
99 Zach | 99 South St xample.org
Order Lineltem
OrderiD | UseriD ¢ OrderlD | ProductiD | Quantity
1234 1234 5 2

78 1234]
5588 588 5

ProductiD | Description Handling

xxxxxxxx

Alternatives to Relational
Schemes: Graph Models

e Document model hides semantic relationships

user: Alce
address: 123 Foo St
phone: 12345678
email abcecexample 0rqQ
Iternate aliceaneod org
order: 1234 v
;'lfj' /8 PRI
nf*"' “ ,6'1 "‘.
/'h i.}.‘-
woer: 1234
cost: 150.00
o Bxd
em efad
v
e ofad
e abxd
jescrplion: strawber
e réam
handing freezer

Alternatives to Relational
Schemes: Graph Models

e Some property values are really
references to foreign aggregates

* Aggregate’s identifier is a foreign

key

* Relationships between them are
not explicitly accessible = u —

e Joining aggregates becomes

expensive L

Alternatives to Relational
Schemes: Graph Models

e Relational Database

e Some queries are simple:
SELECT pl.Person
FROM Person pl JOIN PersonFriend
ON PersonFriend.FriendID = pl.ID JOIN Person p2

ON PersonFriend.PersonlID = p2.ID WHERE p2.Person = 'Bob'
Person PersonFriend
1D Person »| PersoniD | FriendID
] Alice] 2
2 Bob 2 1
" - 2 99
99 Lach
99 1

Alternatives to Relational
Schemes: Graph Models

e Relational Database

e Some queries are more involved: Friends of Bob
SELECT pl.Person
FROM Person pl JOIN PersonFriend

ON PersonFriend.PersonID = pl.ID JOIN Person p2

ON PersonFriend.FriendID = p2.1ID

WHERE pZ2.Person = 'Bob'
Person PersonFriend
ID Person | PersoniD | FriendID
] Alice] 2
2 Bob 2 1
2 99
99 Lach
99 1

Alternatives to Relational
Schemes: Graph Models

e Relational Database

e Some queries others are difficult: Alice’s friends of friends
SELECT pl.Person AS PERSON, p2.Person AS FRIEND OF FRIEND FROM
PersonFriend pfl JOIN Person pl
ON pfl.PersonID = pl.ID JOIN PersonFriend pf?2
ON pf2.PersonID = pfl.FriendID JOIN Person pZ
ON pf2.FriendID = p2.1ID

WHERE pl.Person = 'Alice' AND pf2.FriendID <> pl.ID
Person PersonFriend
0 Person | PersonlD | FriendiD
] Alice | 2
2 Bob 2 1
. - 2 99
99 lach
99 1

Alternatives to Relational
Schemes: Graph Models

e Property graph model by Neon
e Each vertex consists of
e A unique identifier
e A set of outgoing edges
e A set of incoming edges
e A collection of properties — key-value pairs
e Each edge consists of

e A unique identifier

The tail vertex

The head vertex

A label to describe the relationship

A collection of properties — key-value pairs

Alternatives to Relational
Schemes: Graph Models

FRIEND OF

User

User
name: Alice
FRIEND OF
FRIEND OF
FRIEND OF FRIEND OF
LLEAGLRE
FRIEND OF ,
name: name: Jim name: Chad
FRIEND OF A
O
o O & G
S % 7
FRIEND_Of * < C FREND_OF) AN o
\)
5 2
User o« User O User
Qg'.
%
name: Zach me: Grac name: Dave
& P
&/ & 3, MARRIED TO FRIEND_OF | Teren O
5\ V) MARRIED TO
S
User User FRIEND OF User
DISLIKES
me: | name: Fred Jrreno of | name: Ed

Alternatives to Relational
Schemes: Graph Models

 QOrder history as a property graph

MOST RECENT

date: 20120808
status: delivered

date: 20120816
status: dispatched

CONTAINS CONTAINS

id: abed
description: id: efab id: cdef
strawberry ice description: description:
cream brussels sprouts espresso beans

handling: freezer

Alternatives to Relational
Schemes: Graph Models

* Processing queries in Neo4j
e Use Cypher (from “The matrix”)

e Can describe a path

iiiiiiiiii

-
[[[[[[[[[[

(em1l) <=[:KNOWS]-(jJim)—-[:KNOWS]->(1an)-[:KNOWS]->(em1l)

Alternatives to Relational
Schemes: Graph Models

Person

name: Emil

(emil:Person {name:'Emil'})
<-[:KNOWS]-(jJim:Person {name:'JdJim'})
- [:KNOWS]->(1an:Person {name:'Ian'})
— [:KNOWS]->(em11l)

Alternatives to Relational
Schemes: Graph Models

* Finding the mutual friends of Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-

[: KNOWS] => ()
RETURN b, c

Alternatives to Relational
Schemes: Graph Models

e Triple Stores a.k.a. Resource Description Framework

e |Information is stored as (subject, predicate, object)
e Subjects correspond to vertices

e Objects are
A value in a primitive data type — (jim : age : 64)

e Another vertex — (jim : friend_of : thomas)

Alternatives to Relational
Schemes: Graph Models

dprefix : </example>

_lucy a : Person
~tlucy :name “Lucy”
_tlucy :born 1in _:1daho
_:1daho a :Location
_:1daho :name “Idaho”
~:1daho : type “State”

: 1daho :wilithin :usa

Alternatives to Relational
Schemes: Graph Models

Triple stores are the language of the semantic web
Semantic web:
* Machine readable description of type of links

* e.g.image, text, ...
 Creates web of data — a database of everything
Stored in Resource Description Framework (RDF)

SPARQL — query language for triple stores

