
No SQL Databases
Thomas Schwarz, SJ

Relational Model
Shortcomings

• Greater Scalability

• High write throughput / very large datasets

• Independence from few vendors — Move towards Open
Source

• Need for different query operations

• Restrictiveness of relational schemas

NoSQL History
• 2006: Bigtable: distributed storage system for managing

structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers

• Bigtable uses a single key

NoSQL History
• 2007 Dynamo

• Primary key

• Uses consistent hashing to partition and distribute data

• A global, distributed key-value store

NoSQL History
• 2007 - 2009: Riak, MongoDB, HBase, Accumulo,

Hypertable, Redis, Cassandra, Neo4j

• Non-relational databases using different ideas

• Access without SQL

NoSQL characteristics
• Schema agnostic

• Non-relational

• Commodity hardware

• Highly distributable

NoSQL Characteristics
• Schema redesign overhead

• Example Classic-Models:

• You suddenly need to restructure so that you can
split up an order

• If you change the scheme you have old and new
data

• Often discover new relationships after working with
data for a while

NoSQL Characteristics
• Unstructured Data Explosion

• Combining from incompatible sources

• Sparse data

NoSQL Characteristics
• Transactions are expensive

• World-wide 24/7/365.25 data

• Use eventual consistency

Data at Very Large Scale
Example

• Hush: HBase URL Shortener

• Hand a URL to a Shortener service

• Get a shorter URL back

• E.g. to use in twitter messages

• Shortener provides counter for each shortened URLs

• "Vanity URL" that incorporate specific domain names

• Need to maintain users

• log in to create short URLs

• track existing URLs

• see reports for daily, weekly, or monthly usage

Data at Very Large Scale
Example

• Data is too large to store at a single server

• But:

• Limited need for transactions

• Importance of high throughput writes and reads

Data at Very Large Scale
Example

• Columnar Layout

• A relational database strategy often adopted in No-SQL
databases

• Instead of storing data in tuples

• Store by attribute

Data at Very Large Scale
Example

• For large HUSH:

• Can use a relational database

• Use normalization and obtain a scheme

Data at Very Large Scale
• Principles of Denormalization, Duplication, Intelligent Keys

• Denormalize by duplicating data in more than one table

• Avoids aggregation at read time

• Pre-materialize required views

Data at Very Large Scale
• Example: HBase URL Shortener (Hush)

• user(id, username, credentials, rules, first_name,
last_name, email) with unique username constraint

• url(id, url, refShortID, title, description, content)

• shorturl(id, userID, urlID, shortID, refShortID,
description) with unique shortID and F.K. userID and
urlID

• click(id, datestamp, shortID, category, dimension,
counter) with F.K. shortID

Data at Very Large Scale
• Purpose: maps long URLs to short URLs

USER

id
username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id
userID
urlID
shortID
refShortID

PK
FK1
FK2
IDX

URL

id
url
refShortID
title
description
content

PK

CLICK

id
datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• Short URL can be given to others

• This is translated to the full URL

USER

id
username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id
userID
urlID
shortID
refShortID

PK
FK1
FK2
IDX

URL

id
url
refShortID
title
description
content

PK

CLICK

id
datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• Each click is tracked, which aggregates to weekly usage

numbers

USER

id
username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id
userID
urlID
shortID
refShortID

PK
FK1
FK2
IDX

URL

id
url
refShortID
title
description
content

PK

CLICK

id
datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• All these operations require joins

USER

id
username
credentials
roles
first_name
last_name
email

PK

IDX

SHORTURL

id
userID
urlID
shortID
refShortID

PK
FK1
FK2
IDX

URL

id
url
refShortID
title
description
content

PK

CLICK

id
datestamp
shortID
category
dimension
counter

PK

FK1

Data at Very Large Scale
• Bandwidth problem

• Especially for joins

• Need to store data in joins together, not look them up
separately

• But can relax on the consistency model:

• No need to serialize short URL creation or URL
translations or have atomic updates

• Might be able to relax integrity constraints

• Statistics need to be approximately correct

Data at Very Large Scale
• Denormalization:

• Key idea: Store data together that is likely to be joined

• Means:

• massive duplication of data

• relaxed consistency needed

• but faster reads / writes

Data at Very Large Scale
• Key-value database

• Every record is a key-value pair

• Extremely simple lookup: very high performance

• Limited complexity

• A large set of tools predating no-sql databases in
general

• Redis, Amazon DynamoDB, Microsoft Azure
CosmosDB, Memcached

Data at Very Large Scale
• Wide column stores

• names and format of columns can vary from row to row

• with potentially millions of different attributes

• Two-dimensional key-value store:

• Access via row and attributes

• Schema-free

• Google's BigTable is the original

• Apache Cassandra, Microsoft Azure Cosmos DB, Apache
HBase

Data at Very Large Scale
• Example:

Data at Very Large Scale
• Columnar:

• Families of columns are stored together

• Good for aggregation questions

Data at Very Large Scale
• Columnar:

• Good for high write performance

• Good for colocated data access

• Examples: Cassandra, Apache HBase

Data at Very Large Scale
• Document stores

• Schema-free:

• Different records can have different columns

• Types of values can be different

• Columns can have more than one value

• Records can have a nested structure

• XML, JSON databases

• MongoDB, Couchbase, Amazon DynamoDB, Databricks,
Microsoft Azure Cosmos DB

Data at Very Large Scale
• Graph databases

• Navigational database successor:

• information about data interconnectivity or topology as
important as data itself

• Triple:

• A single fact represented by

• subject

• property / relationship

• value

Adam likes cheese
Subject Property Value

Alternatives to Relational
Schemes: XML

• Data is often structured hierarchically
Invoice = {
 date : "2008-05-24"
 invoiceNumber : 421

 InvoiceItems : {
 Item : {
 description : "Wool Paddock Shet Ret Double Bound Yellow 4'0"
 quantity : 1
 unitPrice : 105.00
 }
 Item : {
 description : "Wool Race Roller and Breastplate Red Double"
 quantity : 1
 unitPrice : 75.00
 }
 Item : {
 description : "Paddock Jacket Red Size Medium Inc Embroidery"
 quantity : 2
 unitPrice : 67.50
 }
 }
}

Alternatives to Relational
Schemes: XML

• As an XML document
<invoice>

 <number>421</number>
 <date>2008-05-24</date>
 <items>
 <item>
 <description>Wool Paddock Shet Ret Double Bound Yellow 4'0"</description>
 <quantity>1</quantity>
 <unitPrice>105.00</unitPrice>
 </item>
 <item>
 <description>Wool Race Roller and Breastplate Red Double</description>
 <quantity>1</quantity>
 <unitPrice>75.00</unitPrice>
 </item>
 <item>
 <description>Paddock Jacket Red Size Medium Inc Embroidery</description>
 <quantity>2</quantity>
 <unitPrice>67.50</unitPrice>
 </item>
 </items>
</invoice>

Alternatives to Relational
Schemes: XML

• Advantage of XML

• Faster to scan all data

• No joins

• Disadvantages of XML

• Each record contains the full or an abbreviated scheme

• Each query needs to select from big chunks of data

Alternatives to Relational
Schemes: JSON

• JSON — JavaScript Object Notation

• Human-readable

• Organized as key-value pairs

Alternatives to Relational
Schemes: JSON

• JSON record example
{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 },
 {
 "type": "mobile",
 "number": "123 456-7890"
 }
],
 "children": [],
 "spouse": null
}

Alternatives to Relational
Schemes: JSON

• JSON can use a schema (type definition)

• JSON was first used for data transmission as a data
serialization format

Alternatives to Relational
Schemes: JSON

• Many-to-One and Many-to-Many Relationships

• Modeled by the same value for the same key

• Problem: Need to standardize / internationalize
these values

• Using id-s instead of plain text to avoid problems

• Table of id-s reintroduce a relational scheme through
a backdoor

Alternatives to Relational
Schemes: JSON

• Resumé

• Users present people

• People have jobs, education, and recommenders

• But they share jobs, companies, degrees, schools,
recommenders

• Should they stay text strings or become entities?

• Latter allows to add information to all resumés

• If recommenders get a photo, then all resumés should be
updated with this photo, so better to make recommenders
entities

Alternatives to Relational
Schemes: JSON

positions

user 1 education

recommendation

job 1

job 2

job_title

job_title

rec 1

organization 1

organization 2

organization 3

start
end

start
end

school 1

school 2

school 3

positions

job 1

job 2

job_title

job_title

user 2education

school 3

start
end

start
end

start
end

• Data has a tendency to become less-join free

Document Databases
• Records are documents

• Encode in

• XML

• YAML

• JSON

• BSON (Mongo DB)

• CRUD operations: create, read, update, delete

Document Databases
• Enforcing schema

• Most document databases do not enforce schema

• —> “Schemaless”

• In reality: “Schema on Read”

• RDBMS would then use “Schema on Write”

• Allows schema updates in simple form

Document Databases
• Schema on Read:

• Advantages:

• Data might come from external sources

• Disadvantages:

• No data checking

Document Databases
• Document database support

• Most commercial database systems now support XML
databases

Query Languages
• Documents lend themselves to object-oriented querying

• Imperative code

• SQL is declarative:

• Programmer explains a solution

• System figures out the best way to find the solution

• Use declarative query languages for document databases

Query Languages
• Map-Reduce (neither declarative nor imperative):

• Consists of only two pieces of code

• Mapping: Selecting from Documents

• Reducing: Take selection elements and operate on
them

Alternatives to Relational
Schemes: Graph Models

• Graphs consists of vertices and edges

• Example:

• Social graphs: vertices are people and edges are
relationships such “knows”

• Web graph: vertices are pages and edges are links

• Road networks: vertices are places and edges are
connections

Alternatives to Relational
Schemes: Graph Models

• Relational Database hides semantic relationships

Alternatives to Relational
Schemes: Graph Models

• Document model hides semantic relationships

Alternatives to Relational
Schemes: Graph Models

• Some property values are really
references to foreign aggregates

• Aggregate’s identifier is a foreign
key

• Relationships between them are
not explicitly accessible

• Joining aggregates becomes
expensive

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries are simple:

SELECT p1.Person
FROM Person p1 JOIN PersonFriend
ON PersonFriend.FriendID = p1.ID JOIN Person p2
ON PersonFriend.PersonID = p2.ID WHERE p2.Person = 'Bob'

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries are more involved: Friends of Bob

SELECT p1.Person
FROM Person p1 JOIN PersonFriend
 ON PersonFriend.PersonID = p1.ID JOIN Person p2
 ON PersonFriend.FriendID = p2.ID
WHERE p2.Person = 'Bob'

Alternatives to Relational
Schemes: Graph Models

• Relational Database

• Some queries others are difficult: Alice’s friends of friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND FROM
PersonFriend pf1 JOIN Person p1
ON pf1.PersonID = p1.ID JOIN PersonFriend pf2
ON pf2.PersonID = pf1.FriendID JOIN Person p2
ON pf2.FriendID = p2.ID
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID

Alternatives to Relational
Schemes: Graph Models

• Property graph model by Neon

• Each vertex consists of

• A unique identifier

• A set of outgoing edges

• A set of incoming edges

• A collection of properties — key-value pairs

• Each edge consists of

• A unique identifier

• The tail vertex

• The head vertex

• A label to describe the relationship

• A collection of properties — key-value pairs

Alternatives to Relational
Schemes: Graph Models

Alternatives to Relational
Schemes: Graph Models

• Order history as a property graph

Alternatives to Relational
Schemes: Graph Models

• Processing queries in Neo4j

• Use Cypher (from “The matrix”)

• Can describe a path

 (emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil)

Alternatives to Relational
Schemes: Graph Models

(emil:Person {name:'Emil'})
 <-[:KNOWS]-(jim:Person {name:'Jim'})
 -[:KNOWS]->(ian:Person {name:'Ian'})
 -[:KNOWS]->(emil)

Alternatives to Relational
Schemes: Graph Models

• Finding the mutual friends of Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-
[:KNOWS]->(c)
RETURN b, c

Alternatives to Relational
Schemes: Graph Models

• Triple Stores a.k.a. Resource Description Framework

• Information is stored as (subject, predicate, object)

• Subjects correspond to vertices

• Objects are

• A value in a primitive data type — (jim : age : 64)

• Another vertex — (jim : friend_of : thomas)

Alternatives to Relational
Schemes: Graph Models

@prefix : </example>
_:lucy a :Person
_:lucy :name “Lucy”
_:lucy :born_in _:idaho
_:idaho a :Location
_:idaho :name “Idaho”
_:idaho :type “State”
_:idaho :within _:usa

Alternatives to Relational
Schemes: Graph Models

• Triple stores are the language of the semantic web

• Semantic web:

• Machine readable description of type of links

• e.g. image, text, …

• Creates web of data — a database of everything

• Stored in Resource Description Framework (RDF)

• SPARQL — query language for triple stores

