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Relational Model 
Shortcomings

• Greater Scalability


• High write throughput / very large datasets


• Independence from few vendors — Move towards Open 
Source


• Need for different query operations 


• Restrictiveness of relational schemas



NoSQL History
• 2006: Bigtable: distributed storage system for managing 

structured data that is designed to scale to a very large 
size: petabytes of data across thousands of commodity 
servers


• Bigtable uses a single key



NoSQL History
• 2007 Dynamo


• Primary key


• Uses consistent hashing to partition and distribute data


• A global, distributed key-value store



NoSQL History
• 2007 - 2009: Riak, MongoDB, HBase, Accumulo, 

Hypertable, Redis, Cassandra, Neo4j


• Non-relational databases using different ideas


• Access without SQL



NoSQL characteristics
• Schema agnostic


• Non-relational


• Commodity hardware


• Highly distributable



NoSQL Characteristics
• Schema redesign overhead


• Example Classic-Models: 


• You suddenly need to restructure so that you can 
split up an order 


• If you change the scheme you have old and new 
data


• Often discover new relationships after working with 
data for a while



NoSQL Characteristics
• Unstructured Data Explosion


• Combining from incompatible sources


• Sparse data



NoSQL Characteristics
• Transactions are expensive


• World-wide 24/7/365.25 data


• Use eventual consistency



Data at Very Large Scale 
Example

• Hush: HBase URL Shortener


• Hand a URL to a Shortener service


• Get a shorter URL back


• E.g. to use in twitter messages


• Shortener provides counter for each shortened URLs


• "Vanity URL" that incorporate specific domain names


• Need to maintain users


• log in to create short URLs


• track existing URLs


• see reports for daily, weekly, or monthly usage



Data at Very Large Scale 
Example

• Data is too large to store at a single server


• But: 


• Limited need for transactions


• Importance of high throughput writes and reads



Data at Very Large Scale 
Example

• Columnar Layout


• A relational database strategy often adopted in No-SQL 
databases


• Instead of storing data in tuples


• Store by attribute



Data at Very Large Scale 
Example

• For large HUSH:


• Can use a relational database


• Use normalization and obtain a scheme



Data at Very Large Scale
• Principles of Denormalization, Duplication, Intelligent Keys 


• Denormalize by duplicating data in more than one table


• Avoids aggregation at read time


• Pre-materialize required views



Data at Very Large Scale
• Example: HBase URL Shortener (Hush)


• user(id, username, credentials, rules, first_name, 
last_name, email) with unique username constraint


• url(id, url, refShortID, title, description, content)


• shorturl(id, userID, urlID, shortID, refShortID, 
description) with unique shortID and F.K. userID and 
urlID


• click(id, datestamp, shortID, category, dimension, 
counter) with F.K. shortID



Data at Very Large Scale
• Purpose: maps long URLs to short URLs
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Data at Very Large Scale
• Short URL can be given to others


• This is translated to the full URL
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Data at Very Large Scale
• Each click is tracked, which aggregates to weekly usage 

numbers
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Data at Very Large Scale
• All these operations require joins
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Data at Very Large Scale
• Bandwidth problem


• Especially for joins


• Need to store data in joins together, not look them up 
separately


• But can relax on the consistency model:


• No need to serialize short URL creation or URL 
translations or have atomic updates


• Might be able to relax integrity constraints


• Statistics need to be approximately correct



Data at Very Large Scale
• Denormalization:


• Key idea: Store data together that is likely to be joined


• Means: 


• massive duplication of data


• relaxed consistency needed


• but faster reads / writes



Data at Very Large Scale
• Key-value database


• Every record is a key-value pair


• Extremely simple lookup: very high performance


• Limited complexity


• A large set of tools predating no-sql databases in 
general


• Redis, Amazon DynamoDB, Microsoft Azure 
CosmosDB, Memcached



Data at Very Large Scale
• Wide column stores


• names and format of columns can vary from row to row


• with potentially millions of different attributes


• Two-dimensional key-value store:


• Access via row and attributes


• Schema-free


• Google's BigTable is the original


• Apache Cassandra, Microsoft Azure Cosmos DB, Apache 
HBase



Data at Very Large Scale
• Example:



Data at Very Large Scale
• Columnar:


• Families of columns are stored together


• Good for aggregation questions



Data at Very Large Scale
• Columnar:


• Good for high write performance


• Good for colocated data access


• Examples: Cassandra, Apache HBase



Data at Very Large Scale
• Document stores


• Schema-free:


• Different records can have different  columns


• Types of values can be different


• Columns can have more than one value


• Records can have a nested structure


• XML, JSON databases


• MongoDB, Couchbase, Amazon DynamoDB, Databricks, 
Microsoft Azure Cosmos DB



Data at Very Large Scale
• Graph databases


• Navigational database successor:


• information about data interconnectivity or topology as 
important as data itself


• Triple:


• A single fact represented by 


• subject 

• property  / relationship 

• value

Adam   likes    cheese
Subject Property Value



Alternatives to Relational 
Schemes: XML

• Data is often structured hierarchically
Invoice = {
  date : "2008-05-24"
  invoiceNumber : 421

  InvoiceItems : {
    Item : {
      description : "Wool Paddock Shet Ret Double Bound Yellow 4'0"
      quantity : 1
      unitPrice : 105.00
    }
    Item : {
      description : "Wool Race Roller and Breastplate Red Double"
      quantity : 1
      unitPrice : 75.00
    }
    Item : {
      description : "Paddock Jacket Red Size Medium Inc Embroidery"
      quantity : 2
      unitPrice : 67.50
    }
  }
}



Alternatives to Relational 
Schemes: XML

• As an XML document
<invoice>

 <number>421</number>
 <date>2008-05-24</date>
 <items>
  <item>
   <description>Wool Paddock Shet Ret Double Bound Yellow 4'0"</description>
   <quantity>1</quantity>
   <unitPrice>105.00</unitPrice>
  </item>
  <item>
   <description>Wool Race Roller and Breastplate Red Double</description>
   <quantity>1</quantity>
   <unitPrice>75.00</unitPrice>
  </item>
  <item>
   <description>Paddock Jacket Red Size Medium Inc Embroidery</description>
   <quantity>2</quantity>
   <unitPrice>67.50</unitPrice>
  </item>
 </items>
</invoice>



Alternatives to Relational 
Schemes: XML

• Advantage of XML


• Faster to scan all data


• No joins


• Disadvantages of XML


• Each record contains the full or an abbreviated scheme


• Each query needs to select from big chunks of data 



Alternatives to Relational 
Schemes: JSON

• JSON — JavaScript Object Notation


• Human-readable


• Organized as key-value pairs



Alternatives to Relational 
Schemes: JSON

• JSON record example
{
  "firstName": "John",
  "lastName": "Smith",
  "isAlive": true,
  "age": 27,
  "address": {
    "streetAddress": "21 2nd Street",
    "city": "New York",
    "state": "NY",
    "postalCode": "10021-3100"
  },
  "phoneNumbers": [
    {
      "type": "home",
      "number": "212 555-1234"
    },
    {
      "type": "office",
      "number": "646 555-4567"
    },
    {
      "type": "mobile",
      "number": "123 456-7890"
    }
  ],
  "children": [],
  "spouse": null
}



Alternatives to Relational 
Schemes: JSON

• JSON can use a schema (type definition)


• JSON was first used for data transmission as a data 
serialization format 



Alternatives to Relational 
Schemes: JSON

• Many-to-One and Many-to-Many Relationships


• Modeled by the same value for the same key


• Problem:  Need to standardize / internationalize 
these values


• Using id-s instead of plain text to avoid problems


• Table of id-s reintroduce a relational scheme through 
a backdoor



Alternatives to Relational 
Schemes: JSON

• Resumé


• Users present people


• People have jobs, education, and recommenders


• But they share jobs, companies, degrees, schools, 
recommenders


• Should they stay text strings or become entities?


• Latter allows to add information to all resumés


• If recommenders get a photo, then all resumés should be 
updated with this photo, so better to make recommenders 
entities



Alternatives to Relational 
Schemes: JSON
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• Data has a tendency to become less-join free



Document Databases
• Records are documents


• Encode in 


• XML


• YAML


• JSON


• BSON (Mongo DB)


• CRUD operations: create, read, update, delete



Document Databases
• Enforcing schema


• Most document databases do not enforce schema


• —> “Schemaless”


• In reality: “Schema on Read”


• RDBMS would then use “Schema on Write”


• Allows schema updates in simple form



Document Databases
• Schema on Read:


• Advantages: 


• Data might come from external sources


• Disadvantages:


• No data checking



Document Databases
• Document database support


• Most commercial database systems now support XML 
databases



Query Languages
• Documents lend themselves to object-oriented querying


• Imperative code


• SQL is declarative:


• Programmer explains a solution


• System figures out the best way to find the solution


• Use declarative query languages for document databases



Query Languages
• Map-Reduce (neither declarative nor imperative):


• Consists of only two pieces of code


• Mapping:  Selecting from Documents


• Reducing: Take selection elements and operate on 
them



Alternatives to Relational 
Schemes: Graph Models

• Graphs consists of vertices and edges


• Example:


• Social graphs: vertices are people and edges are 
relationships such “knows”


• Web graph: vertices are pages and edges are links


• Road networks: vertices are places and edges are 
connections



Alternatives to Relational 
Schemes: Graph Models

• Relational Database hides semantic relationships



Alternatives to Relational 
Schemes: Graph Models

• Document model hides semantic relationships



Alternatives to Relational 
Schemes: Graph Models

• Some property values are really 
references to foreign aggregates


• Aggregate’s identifier is a foreign 
key


• Relationships between them are 
not explicitly accessible


• Joining aggregates becomes 
expensive



Alternatives to Relational 
Schemes: Graph Models

• Relational Database


• Some queries are simple:

SELECT p1.Person 
FROM Person p1 JOIN PersonFriend  
ON PersonFriend.FriendID = p1.ID JOIN Person p2  
ON PersonFriend.PersonID = p2.ID WHERE p2.Person = 'Bob'  



Alternatives to Relational 
Schemes: Graph Models

• Relational Database


• Some queries are more involved: Friends of Bob

SELECT p1.Person 
FROM Person p1 JOIN PersonFriend  
   ON PersonFriend.PersonID = p1.ID JOIN Person p2  
   ON PersonFriend.FriendID = p2.ID  
WHERE p2.Person = 'Bob'  
  



Alternatives to Relational 
Schemes: Graph Models

• Relational Database


• Some queries others are difficult: Alice’s friends of friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND FROM 
PersonFriend pf1 JOIN Person p1  
ON pf1.PersonID = p1.ID JOIN PersonFriend pf2  
ON pf2.PersonID = pf1.FriendID JOIN Person p2  
ON pf2.FriendID = p2.ID 
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID  
  



Alternatives to Relational 
Schemes: Graph Models

• Property graph model by Neon


• Each vertex consists of


• A unique identifier


• A set of outgoing edges


• A set of incoming edges


• A collection of properties — key-value pairs


• Each edge consists of 


• A unique identifier


• The tail vertex


• The head vertex


• A label to describe the relationship


• A collection of properties — key-value pairs



Alternatives to Relational 
Schemes: Graph Models



Alternatives to Relational 
Schemes: Graph Models

• Order history as a property graph



Alternatives to Relational 
Schemes: Graph Models

• Processing queries in Neo4j


• Use Cypher (from “The matrix”)


• Can describe a path

 (emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil) 



Alternatives to Relational 
Schemes: Graph Models

(emil:Person {name:'Emil'}) 
      <-[:KNOWS]-(jim:Person {name:'Jim'}) 
      -[:KNOWS]->(ian:Person {name:'Ian'}) 
      -[:KNOWS]->(emil) 



Alternatives to Relational 
Schemes: Graph Models

• Finding the mutual friends of Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-
[:KNOWS]->(c)  
RETURN b, c  



Alternatives to Relational 
Schemes: Graph Models

• Triple Stores a.k.a. Resource Description Framework


• Information is stored as (subject, predicate, object)


• Subjects correspond to vertices


• Objects are


• A value in a primitive data type — ( jim : age : 64)


• Another vertex — (jim : friend_of : thomas)



Alternatives to Relational 
Schemes: Graph Models

@prefix : </example> 
_:lucy    a            :Person 
_:lucy    :name        “Lucy” 
_:lucy    :born_in     _:idaho 
_:idaho   a            :Location 
_:idaho   :name        “Idaho” 
_:idaho   :type        “State” 
_:idaho   :within      _:usa



Alternatives to Relational 
Schemes: Graph Models

• Triple stores are the language of the semantic web


• Semantic web:


• Machine readable description of type of links


• e.g. image, text, …


• Creates web of data — a database of everything


• Stored in Resource Description Framework (RDF)


• SPARQL — query language for triple stores


