
Sample Database

Install Sample Database
• Go to

• https://www.mysqltutorial.org/mysql-sample-
database.aspx

• Should download an sql file

• Called classicmodels

Install Sample Databases
• Method 1:

• Open MySQL Workbench

• Connect to MySQL server

• File —> Run SQL script

• Choose the downloaded file

Install Sample Databases
• Method 2

• Connect to the MySQL server with a terminal

• Should prompt for your password

• Use the source program

• Check with

mysql -u root -p

mysql> source c:\myPath\to\myfile

mysql> show databases;

Install Sample Databases
• You can download the diagram and bring a printed copy

to the next class

SQL

Repetition
• Creating Schemas

• Inserting

• Selection

• Constraints

Data Definition
Language

SQL DDL

• Create a database with CREATE DATABASE

CREATE DATABASE IF NOT EXISTS USNavy;

SQL DDL
• Three type of tables in SQL

• Stored Relations, called tables

• Views: relations calculated by computation

• Temporary tables: created during query execution

SQL DDL
• Data Types

• Character strings of fixed or varying length

• CHAR(n) - fixed length string of up to n characters

• VARCHAR(n) - fixed length string of up to n characters

• Uses and endmarker or string-length for storage
efficiency

• Bit strings

• BIT(n) strings of length exactly n

• BIT VARYING(n) - strings of length up to n

SQL DDL
• Data Types:

• Boolean: BOOLEAN: TRUE, FALSE, UNKNOWN

• Integers: INT = INTEGER, SHORTINT

• Floats: FLOAT = REAL, DOUBLE, DECIMAL(n,m)

• Dates: DATE

• SQL Standard: ‘1948-05-14’)

• Times: TIME

• SQL Standard: 19:20:02.4

SQL DDL
• Data Types:

• MySQL: ENUM('M', 'F')

SQL DDL
• CREATE TABLE creates a table

CREATE TABLE Movies(
 title CHAR(100),
 year INT,
 length INT,
 genre CHAR(10),
 studioName CHAR(30),
 producerC# INT
);

SQL DDL

CREATE TABLE MovieStar(
 name CHAR(30),
 address VARCHAR(255),
 gender CHAR(1),
 birthday DATE
);

SQL DDL
• Drop Table drops a table

DROP TABLE Movies;

SQL DDL
• Altering a table with ALTER TABLE

• with ADD followed by attribute name and data type

• with DROP followed by attribute name

ALTER TABLE MovieStar ADD phone CHAR(16);

ALTER TABLE MovieStar DROP Birthday;

SQL DDL
• Default Values

• Conventions for unknown data

• Usually, NULL

• Can use other values for unknown data

CREATE TABLE MovieStar(
 name CHAR(30),
 address VARCHAR(255),
 gender CHAR(1) DEFAULT '?',
 birthday DATE DEFAULT '0000-00-00'
);

SQL DDL
• Declaring Keys

1. Declare one attribute to be a key

2. Add one additional declaration:

• Particular set of attributes is a key

• Can use

1. PRIMARY KEY

2. UNIQUE

SQL DDL
• UNIQUE for a set S:

• Two tuples cannot agree on all attributes of S unless
one of them is NULL

• Any attempted update that violates this will be
rejected

• PRIMARY KEY for a set S:

• Attributes in S cannot be NULL

SQL DDL

CREATE TABLE MovieStar(
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 gender CHAR(1),
 birthday DATE
);

SQL DDL

CREATE TABLE MovieStar(
 name CHAR(30),
 address VARCHAR(255),
 gender CHAR(1) DEFAULT '?',
 birthday DATE DEFAULT '0000-00-00',
 PRIMARY KEY (name)
);

SQL DDL

CREATE TABLE Movies(
 title CHAR(100),
 year INT,
 length INT,
 genre CHAR(10),
 studioName CHAR(30),
 producerC# INT,
 PRIMARY KEY (title, year)
);

Simple Diagrams
• A schema is represented by a networked diagram

• Nodes represent tables

• Name of the table labels the node

• Interior of the node are the name of the attributes

• Underline the primary key

• Optionally, add domain to each attribute

Simple Diagrams

Sales
purchase_number : int
date_of_purchase : date
customer_id: int
item_code: varchar(10)

Customers
customer_id : int
first_name : varchar(255)
last_name : varchar(255)
email_address : varchar(10)
number of complaints : int

Items
item_code : int
item : varchar(255)
unit_price: decimal(10,2)
company_id: int

Companies
company_id : int
company_name : varchar(63)
headquarters_ph_nr: char(25)

Constraints in MySQL
• Constraints in MySQL have names

• Often automatically generated

• Use the SHOW CREATE TABLE query

Table,"Create Table"
customers,"CREATE TABLE `customers` (
 `customer_id` int NOT NULL AUTO_INCREMENT,
 `first_name` varchar(255) DEFAULT NULL,
 `last_name` varchar(255) DEFAULT NULL,
 `email_address` varchar(255) DEFAULT NULL,
 `number_of_complaints` int DEFAULT (0),
 PRIMARY KEY (`customer_id`),
 UNIQUE KEY `email_address` (`email_address`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci"

Constraints in MySQL
• Missing values are usually a NULL

• Can automatically assign INT with AUTO_INCREMENT

• Used widely to assign artificial primary keys

Constraints in MySQL
• NOT NULL constraint

• When inserting a tuple with NULL value in the
constrained column, error will be thrown

• Considered good practice to include in all columns
where a NULL value is not expected

CREATE TABLE tasks (
 id INT AUTO_INCREMENT PRIMARY KEY,
 title VARCHAR(255) NOT NULL,
 start_date DATE NOT NULL,
 end_date DATE
);

Constraints in MySQL
• ALTER TABLE allows to introduce new / remove old

constraint

• Need to check that the inserted values comply
ALTER TABLE tasks
CHANGE
 end_date
 end_date DATE NOT NULL;

ALTER TABLE tasks
MODIFY
 end_date
 end_date DATE NOT NULL;

Constraints in MySQL
• UNIQUE

• Values in a single attribute are different

• Value groups in a group of attributes are different

• Creating a constraint:

• Specify in CREATE TABLE for a single attribute

• Add a CONSTRAINT cstr_name UNIQUE(attr1, attr2, …)

• Can leave out constraint name, will be replaced by an
automatically created name

• Use ALTER TABLE ADD CONSTRAINT

Constraints in MySQL
• UNIQUE

CREATE TABLE suppliers (
 supplier_id INT AUTO_INCREMENT,
 name VARCHAR(255) NOT NULL,
 phone VARCHAR(15) NOT NULL UNIQUE,
 address VARCHAR(255) NOT NULL,
 PRIMARY KEY (supplier_id),
 CONSTRAINT uc_name_address UNIQUE (name , address)
);

Constraints in MySQL
• UNIQUE constraint creates an index

• Index is a data structure with quick look-up

• Access indices through the SHOW INDEX FROM table
command

Foreign Keys
• Relationships between tables are sometimes constructed

with shared values

• Sales has an attribute client_id

• Customers has a primary key client_id

• Need not be named the same

• But it is usually convenient to do so

Constraints in MySQL

Sales
purchase_number : int
date_of_purchase : date
customer_id: int (FK)
item_code: varchar(10) (FK)

Customers
customer_id : int
first_name : varchar(255)
last_name : varchar(255)
email_address : varchar(10)
number of complaints : int

Items
item_code : int
item : varchar(255)
unit_price: decimal(10,2)
company_id: int (FK)

Companies
company_id : int
company_name : varchar(63)
headquarters_ph_nr: char(25)

purchase_number : int
date_of_purchase : date
customer_id: int (FK)
item_code: varchar(10) (FK)

Constraints in MySQL
• Example:

• A customer can have many sales

• But each sale has only one customer

• Relationship customers sales is a one-to-many
relationship

• customers is the referenced (or parent) table

• sales is the referencing (or child) table

• As is typical, the referenced attribute is a primary key in
the referenced table

Constraints in MySQL

Sales
purchase_number : int
date_of_purchase : date
customer_id: int (FK)
item_code: varchar(10) (FK)

Customers
customer_id : int
first_name : varchar(255)
last_name : varchar(255)
email_address : varchar(10)
number of complaints : int

Items
item_code : int
item : varchar(255)
unit_price: decimal(10,2)
company_id: int (FK)

Companies
company_id : int
company_name : varchar(63)
headquarters_ph_nr: char(25)

purchase_number : int
date_of_purchase : date
customer_id: int (FK)
item_code: varchar(10) (FK)

Constraints in MySQL
• In a diagram:

• crow-feet with ball indicate many

• double bar indicates one

Constraints in MySQL
• Foreign key constraint

• Once established, insures that action is taken upon
insertion or deletion of a record affecting the other table

Constraints in MySQL
• Possible Actions:

• CASCADE: if a tuple from the referenced table is
deleted or updated, the corresponding tuple in the
referencing table is also deleted / updated

• SET NULL: If a row from the referenced table is deleted
or updated, the values of the foreign key in the
referencing table are set to NULL

Constraints in MySQL
• Possible Actions:

• RESTRICT: if a row from the referenced table has a
matching row in the referencing table, then deletion
and updates are rejected

• SET DEFAULT: Accepted by MySQL parser but action
not performed

Constraints in MySQL
• Foreign keys constraint actions

• Are for

• ON UPDATE

• ON DELETE

Constraints in MySQL
• Creating foreign key constraints:
CREATE TABLE categories(
 categoryId INT AUTO_INCREMENT PRIMARY KEY,
 categoryName VARCHAR(100) NOT NULL
);

CREATE TABLE products(
 productId INT AUTO_INCREMENT PRIMARY KEY,
 productName varchar(100) not null,
 categoryId INT,
 CONSTRAINT fk_category
 FOREIGN KEY (categoryId)
 REFERENCES categories(categoryId)
 ON UPDATE CASCADE
 ON DELETE CASCADE
);

Constraints in MySQL
• You can drop a foreign key restraint using the ALTER

TABLE statement

ALTER TABLE table_name
DROP FOREIGN KEY constraint_name;

Constraints in MySQL
• When loading a database from (e.g.) .csv files

• Can carefully create referenced tables before
referencing tables

• Temporarily disable foreign key checks

SET foreign_key_checks = 0;

SET foreign_key_checks = 1;

Insert Operations
• Insert Syntax

• No need to insert into automatic values

• If only a few attributes are set,

• If all attributes are set, just list the values

• Can set many tuples at once

INSERT INTO
table(attr1, attr2, …)
Values(v1, v2, …)

INSERT INTO served
VALUES
('William Howe', 'Great Britain', '1746-1-1', '1778-4-1'),
('Benedict Arnold', 'Great Britain', '1757-1-1', '1775-1-1'),
('Benedict Arnold', 'United States', '1775-1-1', '1780-9-1'),
('Benedict Arnold', 'Great Britain', '1780-9-1', '1787-1-1')

Select

Select
• In order to avoid having to prefix the database name to

tables, use the Use command:

• USE classicmodels;

Select
• SELECT * FROM table

• SELECT col1, col2 FROM table

• SELECT * FROM table WHERE conditions

Select

Select
• You do not need to specify a table to obtain values

Select
• To make SELECT list work you can use the dummy table

name dual

• To rename expressions, use AS

Select

Select
• Use ordering with ORDER BY and ASC / DESC

Select

NULL is always smallest

Select
• We use a WHERE clause in order to specify search

conditions

• Employees whose job title is 'Sales Rep'

SELECT
• There are a number of comparison operators:

• = equals (comparison operator)

• AND, OR

• IN, NOT IN

• LIKE, NOT LIKE

• BETWEEN … AND

• EXISTS, NOT EXISTS

• IS NULL, IS NOT NULL

Select
• Examples:

•

Select

Comparisons with NULL
• NULL in any expression gives NULL

• If you compare anything with NULL in MySQL, you get
NULL

• In other SQL dialects: depends

SELECT
• LIKE

• Pattern matching

• Wild cards

• % means zero or more characters

• _ means a single letter

• [] means any single character within the bracket

• ^ means any character not in the bracket

• - means a range of characters

Like Examples
• WHERE name LIKE 't%'

• any values that start with 't'

• WHERE name LIKE '%t'

• any values that end with 't'

• WHERE name LIKE '%t%'

• any value with a 't' in it

• WHERE name LIKE '_t%'

• any value with a 't' in second position

Select
• Beware of bad data when you make searches

SELECT
• BETWEEN … AND …

• Selects records with a value in the range

• endpoints included

SELECT
• SELECT DISTINCT

SELECT
• LIMIT gives the maximum number of rows returned

• Can be used for a sample

• Can be used with ORDER BY ASC

Queries with more
than one Table

Naming Tables
• We can name tables in the WHERE clause

SELECT
 e.firstName,
 e.lastName
FROM
 employees e
ORDER BY e.firstName;

Simple Joins
• Cartesian product of two tables is called CROSS JOIN:

SELECT
 *
FROM
 offices
 CROSS JOIN
 products;

Simple Joins
• You can convert a cross join to an

inner join with a where clause

SELECT
 productcode, comments
FROM
 orderdetails orde
 CROSS JOIN
 orders ord
WHERE
 orde.ordernumber = ord.ordernumber
AND
 ord.comments IS NOT NULL;

Simple Joins
• But that just gives code harder to read

SELECT
 productcode, comments
FROM
 orderdetails orde
 INNER JOIN
 orders ord
ON
	 orde.ordernumber = ord.ordernumber
WHERE
 ord.comments IS NOT NULL;

Simple Joins
• When the column names are the same, we can use the

USING clause

• Notice the parentheses

SELECT
 productcode, comments
FROM
 orderdetails orde
 INNER JOIN
 orders ord
USING
	 (ordernumber)
WHERE
 ord.comments IS NOT NULL;

Simple Joins
• You can also use the pre-1992 SQL92 notation

SELECT
 productcode, comments
FROM
 orderdetails orde, orders ord
WHERE
 orde.orderNumber = ord.orderNumber
AND
 ord.comments IS NOT NULL;

Simple Joins
• The SQL-92 is clearer whenever the joins are complex

SELECT
 customerName, city, cus.country,
quantityOrdered*priceEach AS 'volume'
FROM
 customers cus
 INNER JOIN orders ord ON cus.customerNumber =
ord.customerNumber
 INNER JOIN orderdetails orddet ON orddet.orderNumber =
ord.orderNumber
WHERE
	 ord.comments IS NOT NULL AND orddet.productCode =
'S18_2325'
;

Simple Joins
• Self-joins: Use different table aliases

SELECT
 CONCAT(m.firstName, ' ', m.lastName) AS manager,
 CONCAT(e.firstName, ' ', e.lastName) AS managee
FROM
	 employees e
 INNER JOIN employees m
 ON
	 	 m.employeeNumber = e.reportsTo
ORDER BY manager;

Simple Joins
• Find pairs of clients that are in the same city

SELECT
 c1.city, c1.customerName, c2.customerName
FROM
	 customers c1 INNER JOIN customers c2 ON
	 	 c1.city = c2.city
 AND c1.customerName > c2.customerName
ORDER BY
	 c1.city

Examples
• SQL has explicit commands for the various joins and

products

• Normally, combine tables by listing them in the FROM
clause

SELECT name
FROM movies, moviesExec
WHERE title = 'Star Wars'
 AND movies.producerC# = moviesExec.cert#

Examples
• Find all movie execs that live with a star

• MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

SELECT MovieStar.name, MovieExec.name)
FROM MovieStar, MovieExec
WHERE

MovieStar.address = MovieExec.address

Examples
• Tuple Variables

• Sometimes need to combine two tuples in the same
table

• Can extend the FROM clause

SELECT Star1.name, Star2.name
FROM MovieStars Star1, MovieStars Star2
WHERE
Star1.address = Star2.address
AND Star1.name < Star2.name

Updates
• Changes existing records

• Syntax:

• Does not need to change all attributes

• If there is no WHERE condition, all records are updated

UPDATE tablename
SET attr1=val1, attr2=val2, …
WHERE conditions;

Commit and Rollback
• A database allows us to rollback to a previous state

unless we have committed

• MySQLWorkbench has an auto-commit button

• Rollback puts database into the state of the last
commit

Delete
• Just like an update

• The Where clause is not necessary

DELETE FROM tablename
WHERE condition

Delete, Drop, Truncate
• Drop Table:

• Definite action: cannot recover with rollback

• Truncate:

• All records removed

• Auto-increment values reset

• Table description stays

• Delete:

• Delete removes records row by row

• Auto-increment values remain

• Slower than truncate

Sub-Queries

Subqueries
• Subqueries are helper queries

Subqueries
• Subqueries producing a scalar value

• Example: Producer of Star Wars

• Can achieve the same effect by first looking for the
producerC#

SELECT name
From movies, movieExec
WHERE title = 'Star Wars'
 AND
 producerC# = cert#;

Subqueries
• Example: Producer of Star Wars

• While the queries are different, their execution can be
the same

SELECT name
FROM movieExec
WHERE cert# =

(SELECT producerC#
 FROM movies
 WHERE title = 'star wars'
)

Subqueries
• You can create sub-tables

• Find employees working in the US

• First: Find officeCodes with country = US

SELECT
 officeCode
FROM
 offices
WHERE
 country = 'USA';

Subqueries
• Second: Connect employees to these office codes

SELECT
	 CONCAT(firstName, ' ', lastName) AS 'employee'
FROM
	 employees
WHERE
	 officeCode IN (
	 SELECT
	 	 officeCode
	 FROM
	 	 offices
	 WHERE
	 	 country = 'USA');

Subqueries
• Find the contact that made the largest payment

Subqueries
• Step 1:

• Need to find maximum payment

Subqueries
• Step 1:

• Need to find maximum payment

SELECT MAX(amount) FROM payments

Subqueries
• Step 2:

• Display the details

SELECT
	 CONCAT(c.contactFirstName, ' ', c.contactLastName) AS
'client contact', checkNumber, amount
FROM
	 customers c, payments p
WHERE
	 amount = (SELECT MAX(amount) FROM payments)
 AND c.customerNumber = p.customerNumber;

Subqueries
• Same, but payments larger than the average amount

SELECT
	 CONCAT(c.contactFirstName, ' ', c.contactLastName) AS
'client contact', checkNumber, amount
FROM
	 customers c, payments p
WHERE
	 amount > (SELECT AVG(amount) FROM payments) AND
c.customerNumber = p.customerNumber;

Subqueries
• Find customers that did not order anything:

• Find the connection!

Subqueries
• The set of customers with orders is given by

customerNumber

SELECT
	 customerNumber
FROM
	 orders;

Subqueries
• We want customer information where the customer

number is not in this set

SELECT *
FROM customerS
WHERE customerNumber NOT IN (SELECT
	 customerNumber
FROM
	 orders);

Subqueries
• And then project

SELECT customerName,
concat(contactFirstName, ' ', contactLastName) AS contact,
city,
country

FROM customers
WHERE customerNumber NOT IN (SELECT
	 customerNumber
FROM
	 orders);

Subqueries
• How big are orders?

• SELECT orderNumber, COUNT(orderNumber) AS items
FROM orderdetails
GROUP BY orderNumber;

Subqueries
• Now find maximum, minimum, and average

SELECT
	 MAX(items),
 MIN(items),
 AVG(items)
FROM
	 (SELECT orderNumber, COUNT(orderNumber) AS items
	 FROM orderdetails
	 GROUP BY orderNumber) AS tempTable;

Subqueries
• Notice that we need to give a name to the subtable

In Class Exercises
• Exercises

(1) Find the different values for statuses

In Class Exercises
use classicmodels;

SELECT DISTINCT
	 status
FROM
	 orders
ORDER BY status ASC;

In Class Exercises
(2) Find the sales volume for all values of status

In Class Exercises
SELECT
	 orders.status,
Sum(orderdetails.priceEach*orderdetails.quantityOrdered) AS
volume
FROM
	 orders, orderdetails
WHERE
	 orders.orderNumber = orderdetails.orderNumber
GROUP BY
	 orders.status;

In Class Exercises
SELECT
	 orders.status,
Sum(orderdetails.priceEach*orderdetails.quantityOrdered) AS
volume
FROM
	 orders INNER JOIN orderdetails
USING
	 (orderNumber)
GROUP BY
	 orders.status;

In Class Exercises
(3) Find the volume for each order by order-number

In Class Exercises
SELECT
	 orderNumber, SUM(priceEach*quantityOrdered) AS total
FROM
	 orderdetails
GROUP BY
	 orderNumber;

In Class Exercises
• Let's combine this with the customer information

• The previous answer becomes a subquery

In Class Exercises
SELECT
	 customerName, total
FROM
	 (SELECT
	 orderNumber, SUM(priceEach*quantityOrdered) AS total
FROM
	 orderdetails
GROUP BY
	 orderNumber) totals,
 customers, orders
WHERE customers.customerNumber = orders.customerNumber AND
orders.orderNumber = totals.orderNumber;

In Class Exercises
• We now sum up the total for each client using another

groupby

In Class Exercises
SELECT
	 customerName, SUM(total) AS volume
FROM
	 (SELECT
	 orderNumber, SUM(priceEach*quantityOrdered) AS total
FROM
	 orderdetails
GROUP BY
	 orderNumber) totals, customers, orders
WHERE customers.customerNumber = orders.customerNumber AND
orders.orderNumber = totals.orderNumber
GROUP BY
	 customers.customerName
ORDER BY
	 volume DESC;

In Class Exercises

In Class Exercises
• The total sales per year

• Use the year(of_a_date) expression

In Class Exercises
SELECT
	 year(shippedDate), SUM(priceEach*quantityOrdered) AS
total
FROM
	 orderdetails, orders
WHERE orderdetails.ordernumber = orders.orderNumber and
orders.status = 'Shipped'
GROUP BY
	 YEAR(shippedDate);

In Class Exercises

Set Theoretic Operations
• Unions, intersections, excepts

• To execute the corresponding set operations

• (SELECT name, address
 FROM movieStars
 WHERE gender = 'F'
)
INTERSECT

(SELECT name, address
 FROM movieExecs
 WHERE netWorth > 1000000
)

Set Theoretic Operations
• Intersects are not implemented in MySQL

• Unions require attributes to be equal

• Use AS as necessary

SELECT
 firstName, lastName, extension AS phone
FROM
 employees
UNION SELECT
 contactFirstName, contactLastName, phone
FROM
 customers;

Subqueries
• Subqueries with conditions involving relations

• We obtain a relation as a subquery

• E.g. with subquery (SELECT * FROM foobar)

• Queries are:

• EXISTS R

• s IN R s NOT IN R

• s > ALL R NOT s > ALL R

• s > ANY R NOT s > ANY R

R

Subqueries
• To analyze a query, start with the inmost query

SELECT name
FROM movieExec
WHERE cert# IN
 (SELECT producerC#
 FROM movies

 WHERE (title, year) IN
 (SELECT movieTitle, movieYear
 FROM StarsIn
 WHERE starName = 'Harrison Ford'

)
);

Subqueries
• This query can also be written without nested subqueries

SELECT name
FROM movieExec, movies, starsIn
WHERE cert# = producerC#
 AND starsIn.title = movies.title
 AND starsIn.year = movie.year
 AND starName = 'Harrison Ford'

Subqueries
• Correlated subqueries

• Subquery is evaluated many times

• Once for each value given

• Example

SELECT title
FROM movies Old
WHERE year < ANY (
 SELECT year
 FROM movies
 WHERE title = Old.title
);

Subqueries
• Scoping rules

• First look for the subquery and tables in that subquery

• Then go to the nesting subquery

• etc.

Subqueries
• Subqueries in FROM clauses

• Here we join on a subquery aliased Prod

SELECT name
FROM movieExecs, (SELECT producerC#
 FROM movies, starsIn
 WHERE movies.title = starsIn.title
 AND movies.year = starsIn.year
 AND starName = 'Harrison Ford'
) Prod
WHERE cert# = Prod.producerC#

Subqueries
• SQL JOIN expression

• Explicit construction of various joins

• CROSS JOIN (product)

• NATURAL JOIN

• FULL OUTER JOIN

• NATURAL FULL OUTER JOIN

• LEFT OUTER JOIN

• RIGHT OUTER JOIN

Subqueries
• Examples

movies FULL OUTER JOIN starsIn ON
movies.title = starsIn.title

Subqueries
• Examples

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)

movieStar NATURAL FULL OUTER JOIN movieExec(
 name, address, gender, birthday, cert#, netWorth)

Eliminating Duplicates
• Use Distinct

• Warning: Invoking distinct is costly

SELECT DISTINCT name
FROM movies

Eliminating Duplicates
• Union, intersection, difference usually remove duplicates

automatically

• If we do not want this, but bag semantics:

• Use the keyword all

(SELECT title, year
FROM movies)
UNION ALL
(SELECT movieTitle AS title,
 movieYear AS year
 FROM
 starsIn);

Aggregate Functions
• COUNT

• numeric and non-numeric data

• null values excepted

• SUM, MIN, MAX, AVG - only numeric data

• Exercise: Find the number of different stars in the starsIn
table

SELECT COUNT(DISTINCT name)
FROM starsIn

Aggregate Functions
• Find the combined net-worth of movieExecs

• Find the average net-worth of movieExecs

SELECT SUM(networth)
FROM movieExecs

SELECT ROUND(AVG(networth),2)
FROM movieExecs

Aggregate Functions
• Dealing if NULL values

• IFNULL(EXPR1, EXPR2):

• Gives EXPR1 if it is not NULL and EXPR2 if not

• SELECT
name,
IFNULL(studio, 'not president') AS studio

FROM movieExecs;

Aggregate Functions
• COALESCE(EXPR1, EXPR2, EXPR3, … EXPRn)

• Gives first nonNULL expression

Grouping
• Aggregation happens usually with grouping

• To group, use GROUP BY followed by a WHERE clause

SELECT studioName, SUM(length) AS totalRunTime
FROM movies
GROUP BY studioName;

Grouping
• Example

• Computing the total run time of movies produced by a
producer

SELECT name, SUM(length) AS totalRunTime
FROM MovieExec, Movies
WHERE producerC# = cert#
GROUP BY name;

Grouping
• Aggregation and Nulls

• NULL does not contribute to a sum, average, or count

• Grouping and Nulls

• NULL is an ordinary value for grouping purposes

• Aggregation except COUNT over an empty bag gives
result NULL

Transactions

Transactions
• Databases have to process many operations in parallel

• This means some support for inter-process
communication

• Usually provided by logging

• DBMS differ in what they provide

• Serializability:

• All transactions appear to have been executed one
after the other

Transactions
• Atomicity

• A single query is never interrupted:

• Example:

• A transfer of money from one account to another
is executed completely or not at all

• Both accounts have changed or none

Transactions
• Transaction

• A group of SQL statements that are all processed in the
order given or not at all

• SQL:

• START TRANSACTION

• either

• COMMIT

• ROLLBACK

Transactions
• Read only transactions

• By declaring a transaction as read-only, SQL can
usually perform it quicker

• SET TRANSACTION READ ONLY;

• SET TRANSACTION READ WRITE;

Transactions
• Dirty Reads:

• Reading a record from an update that will be rolled-back

• Are dirty reads bad?

• Depends

• Sometimes, it does not matter, and we do not want the
DBMS spend time on making sure that there are no
dirty reads

• Sometimes, a dirty read can absolutely mess up things

• Selling the same commodity to two customers, …

Transactions
• SQL Isolation Levels:

• Allow dirty reads:

• SET TRANSACTION READ WRITE

• SET ISOLATION LEVEL READ UNCOMMITTED

Transactions
• SQL Isolation Levels:

• Allow reads only of committed data:

• SET TRANSACTION READ WRITE

• SET ISOLATION LEVEL READ COMMITTED

Transactions
• SQL Isolation Levels:

• Disallow dirty reads, but insure that the reads are
consistent:

• SET TRANSACTION READ WRITE

• SET ISOLATION LEVEL READ REPEATABLE READ

Transactions
• SQL Isolation Levels:

• Serializability (default):

• SET TRANSACTION READ WRITE

• SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

