
Replica Management
Data at Scale

Replication Problems
• Replication is done in order to

• Keep data close to users (and thus reduce latency)

• Failure tolerance (data is available when one replica is
accessible)

• Scale out the number of machines that can serve read
queries

Sharding
• Sharding:

• Divide data into shards and distribute them to different
servers

Replica Management
• Need to insure that all replica are updated.

• Traditional method: Primary copy / leader / master-slave

Leader

User

write request

Follower

Follower

Propagated
Update

Propagated
Update

User

read request

Replica Management
• Can implement quasi-synchronous or asynchronous

updates

• Latter: a replica is updated later than the others

Replica Management
• Synchronous updates

• Can use 2-phase or 3-phase commit

• Absolute synchronous updates are not possible

• Gets into problems with a failed follower

Replica Management
• Mixed synchronous and asynchronous updates

• Only one follower is updated synchronously

• Guarantees that updates are not lost when the leader
fails

Replica Management
• Asynchronous updates:

• Clients that read from different replica might get
inconsistent data

• TASK

• Give an example how serializability is violated

Replica Management
• Example:

• T1: l(x)l(y)r(x)r(y)w(x)w(y)u(x)u(y)

• T2: l(x)l(y)r(x)r(y)l(x)l(y)

• History at Site 1 that stores the preferred copy of x:

•

• History at Site 2 that stores the preferred copy of y:

•

• Locks need to be acquired and released globally

l1(x)l1(y)r1(x)w1(x)w1(y)u1(x)u1(y)l2(x)r2(x)u2(x)

l2(y)r2(y)u2(y)l1(x)l1(y)w1(x)w1(y)u1(x)u1(y)

Replica Management
• Creating a new follower:

• Instead of locking the whole database

• Step 1: Create a “snapshot” of the distributed system

• Easy, because of leader

• This induces leader to log all updates after the snapshot by
creating a note to the

• Step 2: Copy the snapshot to the new follower

• Step 3: New follower obtains log of updates since snapshot

• Step 4: Once the backlog is processed, follower moves to
normal processing

Replica Management
• Dealing with failure

• Follower failure

• If a follower knows that it has failed

• Synchronize logs with leader

• Leader failure

• Much more complicated

Leader Failure
• Dealing with leader failure:

• Need to promote a follower

• Reset writes

• Inform others

Leader Failure
• Detecting Failure

• Many sources of failure

• Detecting failure:

• Heart-beat monitoring

• Electing a new leader

• Example of a distributed consensus protocol

• Reconfiguration to new leader

Leader Failure
• Problems:

• Asynchronous replication:

• Writes are still pending, old leader has not received
all acknowledgments

• Some solutions throw away updates that have not
been performed by all

• This violates durability of committed transactions

Leader Failure
• Problems:

• Out-of-date data can cause problems if other services
use the database

• Lead to github unavailability for 2012

Leader Failure
• Problems:

• With a network partition, we can have two leaders

• If the timeout for failure detection is too fast, can have
the re-election of a live leader

• Split Brain

• Leads to data corruption if writes are processed
differently by the two leaders

Replication Management
• Statement based replication:

• Forward all SQL ops to all followers

• Difficult with non-deterministic functions such as
NOW() or RAND()

• Auto-increment relies on the exact order of updates

• Statements can have side-effects (triggers, stored
procedures, user-defined functions) and need to
have exactly the same at each node

Replication Management
• Replication based on Write-Ahead Log (WAL)

• Log-structured storage engine

• Log is the main place for storage

• B-trees

• Each modification is first written to the write-ahead log

• Log is an append-only structure

• Replicas can be based on exactly the same log

• Used in Posgres and Oracle

Replication Management
• Replication based on a replication log

• Separates log for storage and for replication

• Logical log contains the new rows

Replication Management
• Trigger based replication

• Form of replication outside of the database system

• Triggers: Automatically executed code upon change
in the database

• Trigger based replication:

• Usually greater overheads than replication at the
database level but more flexible

Replication Consistency
• Asynchronous writes create more consistency problems

• Several models of consistency

• READ YOUR OWN WRITES Consistency

• aka READ-AFTER-WRITE Consistency

• Avoids: User writes data, then reads from a different
replica that has not yet updated

• Example:

• User reads her profile only from the leader

• Every one else can get profile from any node

Replication Consistency
• Implementing Read your own write consistency

• User reads from leader if the data could have been
changed

• User reads from leader if the data could have been
changed by the user himself

• Using timestamps

Replication Consistency
• CROSS-DEVICE READ YOUR OWN WRITE

CONSISTENCY

• User can use different devices to read and write

Replication Consistency
• MONOTONIC READ CONSISTENCY

• Avoids:

• User reads from one replica without large lag one
value

• User reads from another replica with large lag
another value

• Read old value before new value

Replication Consistency
• MONOTONIC READ CONSISTENCY

• If a user reads different versions of the same value,
then the versions are read in the order of write times

• Implementation

• Make users read from a user-dependent replica

Replication Consistency
• CONSISTENT PREFIX READS

• Avoids violation of causality

• Example: If a sequence of writes happens in a
certain order, then they are read in this order

Multi-Leader Replication
• Can use multiple leaders

• To allow more than one node to accept writes

• Multi-databases

• Offline installations

• Each leader acts as a follower

Multi-Leader Replication
• Handling write conflicts

• Single leader: Leader resolves order

• Multi-leader: Avoid conflicts

• Each user has a single, designated leader for
updates from the user

Multi-Leader Replication
• Converging toward a consistent state

• Solve conflicts by using Last Write Wins

• Determine last write using

• timestamps

• leader to receive write tags write with its ID, then
the write with highest tag wins

• Merge writes

• Record conflict in an explicit data structure

Multi-Leader Replication
• Converging towards a consistent state

• Using custom conflict resolution

• Triggered On write: If a conflict is detected

• E.g. Bucardo (replicated PostgreSQL)

• Triggered on read: Create multi-versions

Leader-less Replication
• Used by Dynamo, Riak, Cassandra, Voldemort

• Known as “dynamo-style”

• Requests are sent to all replica

• Need a write-quorum of replica to update

• Need a read-quorum of replica to read

Leader-less Replication
• Convergence to a consistent state

• Read Repair:

• When a client reads inconsistent data from the
replica, a “read repair” is triggered

• Anti-entropy process:

• Background process that checks for consistency

Leader-less Replication
• Quorums for n nodes

• Set read quorum r

• Set write quorum w

• Works if r + w > n

Leader-less Replication
• Why would it not work if ?w + r ≤ n

Leader-less Replication
• Quora might need to be adjusted in case of node failures

• Can use “witnesses” to provide votes without the actual
value

• Witness stores a version number

Leader-less Replication
• Sloppy quora and hand-offs

• Can use other than the designated nodes for the record
if a node is unavailable

• Can lead to inconsistency

