
Sharding
a.k.a. Partitioning

Data At Scale

Sharding
• Distribute a large data set over several nodes

• Known as shards in MongoDB, ElasticSearch,
SolrCloud

• Known as region in HBase

• Tablet in big table

• vnode in Cassandra and Riak

• vBucket in Couchbase

• Partition everywhere else

Sharding
• Distributing relational databases

• Strategy 1: Assign tables to different nodes

• Strategy 2: Horizontal partitioning of a table

• Partitions the relations (rows)

• Strategy 3: Vertical partitioning of a table

• Partitions the columns

• Usually repeats a column

• Extreme form is columnar storage

Sharding Replication
• Replication:

• The same datum is stored at different nodes

• Partitioning:

• Datum is only stored once, but different nodes store
different data

≠

Partitioning by Key
• Linear Hashing

• Consistent Hashing

• Keys are interpreted as binary numbers in [0, 1]

• Arranged in a virtual circle

• Nodes are given random ids in [0, 1]

• Keys go to the next higher node

.00000000

.01000000

.10000000

.11000000

.11100000

Partitioning by key
• Distributed Hash Tables —Chord (2001)

• P2P system using consistent hashing

• Client looking for a record with a key

• Needs to find one single node

• Then Chord routing takes place

Partitioning by key
• Each node knows its successor

• This is enough for routing:

• The request is sent to the
next node until the node is
the one responsible for the
key

• To speed searches up, each
node contains pointers to two
other nodes further away

• Route request to the furthest
node with ID <= key

Partitioning by key
• A new node is assigned a random key, splitting a random

partition

• Alternative: Broadcast from all nodes, finding the most
overloaded one and give new node an id in the middle
of the partition

• To allow updates: each node must know its predecessor
as well

• Allow Stabilization process that updates finger table

• Chord with n nodes uses O(log n) nodes to find a key

Partitioning by key
• Hash function

• Needs to be derived directly from key

• E.g. Java Object.hashCode() and Ruby Object#hash
depend on the system and the key

• Needs to have good statistical properties

• Does usually not need to be cryptographically
secure

Partitioning by key
• Ranges: RP*, BigCloud, SDDS B*-tree

Skewed Workloads
• No partitioning scheme known today deals well with hot

keys

• Records with a hot key overflow each node

• Can artificially alter key to distribute over several nodes

Secondary Indices
• Databases have long used a number of secondary indices

in order to speed up access

• Some key value stores do not allow secondary indices

• Hbase, Voldemort

• Others add them because of their usefulness

• Riak

Partitioning with Secondary
Indices

• Partitioning Secondary Indices by Document

• Use Document ID to partition documents

• Each node maintains secondary indices only for its
records

• Local secondary indices

• Using secondary indices means broadcasting to all
nodes

Partitioning with Secondary
Indices

• Partitioning by Term

• Create a global secondary index

• Partition the global secondary index for fast access

Rebalancing partitions
• Over time, databases tend to get bigger

• Need to repartition

• Bad Example: Using key mod #nodes

• Almost all records move

• LH* evolution (does not react to skewed workload)

• Factorial number system

Thomas Schwarz, SJ, Ignacio Corderí, Darrell D.E. Long, Jehan-François Pâris: Simple, Exact Placement of Data in Containers,
International Conference on Computing, Networking and Communications, Data Storage Technology and Applications Symposium,
ICNC'13, San Diego, CA, January 28-31, 2013.

Rebalancing partitions
• Create many partitions

• Assign partitions to different nodes

• Riak, Elasticsearch, Couchbase, Voldemort

• Dynamic Range Partitioning

