Distributed Time

Marquette University

Physical Iime

e System clock
* Precisely machined quartz crystal
* Counter and Holding register
* Each oscillation of quartz decrements counter
* When counter gets to zero, generate interrupt
* Counter is reloaded from holding register
* Time Is incremented

Physical Iime

* On a single system
* Absolute time does not really matter
* Important are relative times
* Example:

* Make will recompile *.c tiles if their modified
time is later than the corresponding *.o file

Physical Iime

* Multiple CPU with their own clock
e Distributed systems
* Need to deal with clock skew
* |s there a single notion of time”
* Astronomical time
* Atom clock time TAl
* | eap seconds, UTC

Physical Iime

Earth's orbit
A transit of the sun
occurs when the
sun reaches the At the transit of the sun
highest point of n days later, the earth
the day Sun has rotated fewer

than 360°

Earth on day O at the X %

transit of the sun ¢ / To distant galaxy
X

To distant galaxy

Earth on day n at the
transit of the sun

Physical Iime

* Clock synchronization algorithms
* Cristian’s algorithm
* Ask time server for time
* Determine time

Both Tp and Ty are measured with the same clock

Client

Time server

|, Interrupt handling time

Physical Iime

 Jo determine most likely time given a value send by a time
server:

 Repeat several times

* Record request send and answer received times (in
ocal time)

 Record answer received
* Eliminate outliers

* Calculate delta
 Average delta

e Adjust local time

A = ttime server (treceived + tsent)/z

Physical Iime

* (Group quiz
* Calculate clock adjustment

sent received value
300 350 410
450 495 555
600 750 620
300 845 915
1000 1055 1135

1200 1400 1590

Physical Iime

* Berkeley Algorithm
* Time daemon polls all machines asking for their time
» Calculates average time
* Jells all other machines how to adjust

Time daemon
3:00 ¥ 3.00 3:00

LOF Lo L]
) () [
ST REIEREIE

2:50 325 2:50 3:25 3:05 3:05
(a) (b) (c)

| ogical Clocks

* Absolute time is rarely used
* Exceptions: time outs

* [or distributed protocols:
* Need Logical Time

|_ogical Clocks

 Lamport time stamps
 "Happens betore” relationship between events:
e a<™D
 AXiOoms:

* a, b events in the same process, and a happens
betore b, then a<™d

o |f
* a— message being sent
e b — message being received
e then
* a<™b

| ogical Clocks

* Each system maintains its own logical time

* Each local event advances the logical time by (at
east one tick)

* Each message Is time-stamped
* When a message is received, set local time to
* MAX(local_time + 1, time_stamp + 1)
* Properties
* Local events have different times

|_ogical Clocks

* Replica management
* All replicas need to see the same sequence of

updates
i Jpdatet L_Jp_d_a_t_e_g_ _i
Repli
Update 1 is Bplieaten galdoase Update 2 is
performed before performed before

update 2 update 1

|_ogical Clocks

- Totally Ordered Multicast

* Multicast in which all messages are delivered in the same
order to receivers

* Group of processes multicasting to each other
« Each message is time-stamped
 Messages are received in order sent
 Messages are sent to everyone, including the sender
 Messages are put in local queues ordered by timestamp
e Receiver multicast acknowledgments to the other processes

* [amport clock algorithm assures that all messages have different
timestamps

* All processes eventually have the same messages in their queue

|_ogical Clocks

* |Individual quiz:

* Assume C1 and C2 send out update messages
at the same time to replica servers R1 and R2

Vector limestamps

* Lamport timestamps do not capture causality

* Vector timestamps better capture causality
Vi = V;[1], Vi[1],.... Vi[n]]

* Number of events that have occurred at process Pi:

Vilil

* PiI knows that k events have occurred at Pj if

Vilg] = k

Vector limestamps

* Process Piincrements Vi[i] whenever something
local happens

* Process P| receives message with V|
o Sets VK] = MAX(Vi[k], Vj|k])

Vector limestamps

* Bulletin board with several threads
* | ocal events are sending of messages

* Maintainer of the bulletin board only posts
messages If it knows that all casually anterior
messages have been received

