
Distributed Time
Marquette University

Physical Time
• System clock

• Precisely machined quartz crystal
• Counter and Holding register

• Each oscillation of quartz decrements counter
• When counter gets to zero, generate interrupt

• Counter is reloaded from holding register
• Time is incremented

Physical Time
• On a single system

• Absolute time does not really matter
• Important are relative times

• Example:
• Make will recompile *.c files if their modified

time is later than the corresponding *.o file

Physical Time
• Multiple CPU with their own clock
• Distributed systems

• Need to deal with clock skew
• Is there a single notion of time?

• Astronomical time
• Atom clock time TAI

• Leap seconds, UTC

Physical Time

Physical Time
• Clock synchronization algorithms

• Cristian’s algorithm
• Ask time server for time
• Determine time

Physical Time
• To determine most likely time given a value send by a time

server:
• Repeat several times

• Record request send and answer received times (in
local time)

• Record answer received
• Eliminate outliers
• Calculate delta
• Average delta
• Adjust local time

� = ttime server � (treceived + tsent)/2

Physical Time
• Group quiz

• Calculate clock adjustment

sent received value
300 350 410
450 495 555
600 750 620
800 845 915
1000 1055 1135
1200 1400 1590

Physical Time
• Berkeley Algorithm

• Time daemon polls all machines asking for their time
• Calculates average time
• Tells all other machines how to adjust

Logical Clocks
• Absolute time is rarely used

• Exceptions: time outs
• For distributed protocols:

• Need Logical Time
•

Logical Clocks
• Lamport time stamps

• “Happens before” relationship between events:
• a <* b

• Axioms:
• a, b events in the same process, and a happens

before b, then a<*b
• If

• a — message being sent
• b — message being received

• then
• a <* b

Logical Clocks
• Each system maintains its own logical time

• Each local event advances the logical time by (at
least one tick)

• Each message is time-stamped
• When a message is received, set local time to

• MAX(local_time + 1, time_stamp + 1)
• Properties

• Local events have different times

Logical Clocks
• Replica management

• All replicas need to see the same sequence of
updates

Logical Clocks
• Totally Ordered Multicast

• Multicast in which all messages are delivered in the same
order to receivers
• Group of processes multicasting to each other

• Each message is time-stamped
• Messages are received in order sent
• Messages are sent to everyone, including the sender
• Messages are put in local queues ordered by timestamp
• Receiver multicast acknowledgments to the other processes

• Lamport clock algorithm assures that all messages have different
timestamps

• All processes eventually have the same messages in their queue

Logical Clocks
• Individual quiz:

• Assume C1 and C2 send out update messages
at the same time to replica servers R1 and R2

Vector Timestamps
• Lamport timestamps do not capture causality
• Vector timestamps better capture causality

• Number of events that have occurred at process Pi:

• Pi knows that k events have occurred at Pj if

Vi[i]

Vi[j] = k

Vi = [Vi[1], Vi[1], . . . Vi[n]]

Vector Timestamps
• Process Pi increments Vi[i] whenever something

local happens
• Process Pj receives message with Vj

• Sets Vj[k] = MAX(Vi[k], Vj[k])

Vector Timestamps
• Bulletin board with several threads

• Local events are sending of messages
• Maintainer of the bulletin board only posts

messages if it knows that all casually anterior
messages have been received

