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Transaction Concept
• Transactions: 

• Transparent concurrency 
• Transparent recovery 

• Atomic 
• Transaction is completely executed or not at all 

• Consistency 
• Consistency constraints are preserved by a transaction 

• Isolation 
• Each transaction behaves as if it were operating alone 

• Durability 
• Updates made by a committed transaction are durable



Transaction Concept
• Computational model 

• Elementary operations on data objects 
• Transactions are sequences of these operations 
• The execution of several transactions is 

described by a schedule or history 
• Histories where ACID properties are guaranteed 

are correct 
• Generate algorithms / protocols



Transaction Concept
• Computational model: Page model 

• Transaction is a sequence of elementary 
operations 
• read, write 

• on a single page 
• Can talk about the value of a page at each level 

in the history



Transaction Concept
• Computational model 

• Example transaction: 
• t = r(x)r(y)r(z)w(u)w(x) 

• Transaction reads three values 
• Can use these values to write new values 
• One value has potentially changed 



Transaction Concept
• Not necessary to assume that the steps in a 

transaction are sequential 
• Just need a partial order between the steps



Concurrency Control
• Canonical Concurrency Problems 

• Lost update problem

t1: 
r(x) 

x+=30 

w(x)

t2: 

r(x) 

x+=120 

w(x)



Concurrency Control
• Inconsistent read problem 

• Assume the constraint x+y==0

t1: 

r(x) 
r(y)

t2: 
r(x) 
x-=10 
w(x) 
r(y) 
y+=10 

w(y)



Concurrency Control
• Dirty read problem (Reading uncommitted data)

t1: 
r(x) 
x+=100 
w(x) 

rollback

t2: 

r(x) 

x-=100 

w(x) 



Concurrency Control
• History 

• The sequence of all elementary operations of all 
transactions 

• Schedule 
• A prefix of a history 

• Serial History 
• A history where all elementary operations of one 

transaction are done before those of another 
transaction or where all elementary operations of one 
transaction are done after those of another transaction



Concurrency Control
• Herbrand Semantics 

• A notion to make precise what is the result of a 
history without specifying values 

• Because we could change a non-serial history to 
a serial one by altering values written 

• For example, set all transfer, withdrawal, and 
deposit amounts to 0 to make any history in a 
bank database serial



Concurrency Control
• Herbrand value of a read is the Herbrand value of 

the last write 
• Herbrand value of a write is a generic functions of 

all reads of the executor of the write



Final state serializability
• Final state serializability 

• Final state equivalence 
• Two histories are final state equivalent  if 

• They contain the same operations 
• They have the same Herbrand semantics



Final state serializability
• Final state equivalency example

s1 = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)

s2 = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)



Final state serializability
• Final state equivalency example

s1 = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)

s2 = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)

Herbrand value of x depends on what 1 saw, which is 
x unaltered in both schedules 
Herbrand value of y depends on what 1 saw 
Herbrand value of z depends on what 2 saw, which is  
x and y unaltered 
 



Final state serializability
• Finite state equivalency example:

sa = r1(x)r2(y)w1(y)w2(y)

sb = r1(x)w1(y)r2(y)w2(y)



Final state serializability
• Finite state equivalency example:

sa = r1(x)r2(y)w1(y)w2(y)

sb = r1(x)w1(y)r2(y)w2(y)

The Herbrand value of y is the original value of y in the  
first schedule and depends on the write by 1 in the second 
schedule.



Final state serializability
• We can decide final state serializability with the Life-

Reads-From relation 
• Reads-from 

• A transaction reads a value after it has been last 
written by another transaction 

• Alive 
• Final value depends on the transaction 

• Two schedules are final state serializable iff  
• they consist of the same operations 
• they have the same life-reads-from relation



Final state serializability
• A schedule is final-state serializable 

• IFF it is final state equivalent to a serial schedule 
• IFF it has the same life-read-from relation as a 

serial schedule



View Serializability
• Final state serializability is still insufficient 

• Lost update anomaly is detected (good) 

• Inconsistent read is still allowed by final state 
serializability (bad)

r1(x)r2(x)w1(x)w2(x)

r2(x)w2(x)r1(x)r1(y)r2(y)w2(y)

Transaction 1 makes an inconsistent read, but the final state ignores 
it. 



View Serializability
• View equivalence 

• Two schedules are view equivalent if 
• They have the same set of operations 
• The Herbrand values of their schedules are 

equal 
• The Herbrand values at each read or write step 

are equivalent



View Serializability
• View equivalence 

• Two schedules are view equivalent 
• IFF they have the same read-from relation



Conflict Serializability
• Easier to test than view serializability 
• Conflict relation: 

• Two operations are in conflict 
• If they access the same data item  
• At least one of them is a write 

• Conflict relation: transitive closure 
• Conflict equivalence 

• Two schedules are conflict equivalent 
• They have the same set of operations 
• Their conflict set is the same



Conflict Serializability
w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)



Conflict Serializability
w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)

{(w1(x), r2(x)), (w1(x), w3(x)), (r2(x), w3(x)), (w2(y), r1(y)), (w2(y), w1(y)), (w1(y), w3(y))}



Conflict Serializability
• A schedule is conflict serializable  

• IFF it is conflict equivalent to a serial schedule



Conflict Serializability
• Algebraic notation: 

• C1 
• C2 
• C3 

ri(x)rj(y) ⇠ rj(y)ri(x) if i 6= j

ri(x)wj(y) ⇠ wj(y)ri(x) if i 6= j and x 6= y

wi(x)wj(y) ⇠ wj(y)wi(x) if i 6= j and x 6= y



Conflict Serializability
• Two schedules with the same operations are 

equivalent 
• Iff one can be transformed to the other using the 

commutativity rules



Commit Serializability
• Conflict serializability does not detect the dirty read 

problem  
• Since it does not pay attention to commit and 

abort operations 

• Correctness criterion should only take committed 
transactions into account 

• Since systems can crash 
• All prefixes of a schedule have to be correct



Commit Serializability
• A schedule is commit conflict serializable iff 

• Projection on committed transactions is conflict 
serializable



Concurrency Control 
Algorithms

• How to deal with bad situations: 
• Strategy 1: Never get into a bad situation 
• Strategy 2: Know how to get out of a bad 

situation (rollback)



Concurrency Control 
Algorithms

• Locking scheduler: Never get into a bad situation 
• Use locks on data items 

• Shared / Read Locks 
• Exclusive / Write Locks 

• Locking problems: 
• Need to make sure that transactions release locks 

• Kill all Zombies!!!!! 
• Need to avoid deadlock 
• Need to avoid life lock



Locking Algorithms
• No restrictions on locking are hard to get right 
• Two phase locking  (2PL) 

• All transactions pass first through a phase  
• where they only acquire locks 

• Then through a phase 
• where they only release locks 

• A schedule with 2PL is conflict serializable 
• But not every conflict serializable schedule can 

be created with 2PL



Locking Algorithms
2PL



Locking Algorithms
• 2PL 

• Dirty reads: 
• Allows transactions to read from transaction that are 

later aborted 
• Strict 2PL 

• Release locks only at the end of a transaction 
• Allows easy automatization 

• Application wants to read an item 
• Automatically request lock 

• When committing, automatically release all locks



Locking Algorithms



Locking Algorithms
• Deadlock Handling 

• Normal lock requests can lead to deadlock 

• Yields 

• l read-lock 
• L write-lock

r1(x)w2(y)w2(x)c2w1(y)c1

l1(x)r1(x)L2(y)w2(y) . . .



Locking Algorithms
• Deadlock handling 

• Lock conversion can also lead to deadlock

t1 : r1(x)w1(x)

t2 : r2(x)w2(x)

l1(x)r1(x)l2(x)r2(x)????



Locking Algorithms
• Deadlock Detection 

• Wait for graph 
• Nodes are transactions 
• Edges represent “waiting for”

t1 : r1(x)w1(x)

t2 : r2(x)w2(x)

l1(x)r1(x)l2(x)r2(x)????

t1 t2

x

x



Locking Algorithms
• Deadlock detection 

• Continuous detection 
• WFT is always kept cycle free 

• Periodic detection 
• Check WFT for cycles periodically



Locking Algorithms
• Deadlock detection 

• If a scheduler detects a cycle: 
• Aborts a victim transaction  

• according to heuristics 
• Last blocked 
• Random 
• Youngest 
• Minimum locks 
• Minimum work 
• Most cycles 
• Most edges



Locking Algorithms
• Life-lock 

• All victim selection mechanism can create live-
lock 
• Incarnations of the same transaction are 

always chosen  
• Various heuristics to avoid life-lock



Locking Algorithms
t1 t2 t3

t4 t5 t6

Most cycle heuristics: 
Remove dashed edge by aborting  

t2 or t5



Locking Algorithms

t1 t2 t3

t4 t5 t6

t7

t8

t10

t9

Dashed cycle breaks the most cycles



Locking Algorithms

t1

t2t3

t4

t5

t6

WFG with cycle and two  
candidate victims (t1, t2) 

Most edges option: 
Abort t1: Two edges remain 
Abort t2: Four edges remain 

Hence: Abort t1



Locking Algorithms
• Deadlock prevention 

• Abort transaction whose lock request would 
create a cycle



Non-Locking Algorithms
• Timestamp ordering 

• Each transactions gets a unique timestamp 
• Timestamp Ordering rule 

• All operations inherit their timestamp from the 
transaction 

• If two operations are in conflict, then the one 
with the smaller timestamp has to be done first 

• If this impossible, abort the offending 
transaction



Non-Locking Algorithms
• Basic time-stamp ordering (BTO) 

• For all data items, maintain the largest timestamp 
for 
• a read operation: max-r-scheduled(x) 
• a write operation: max-w-scheduled(x)



Non-Locking Algorithms
• BTO: Transactions can be too late and are aborted 

• w2(x) succeeds since t1 < t2 
• r3(y) succeeds since t3 < t2 
• w2(y) fails since t2<t3, t2 is aborted 
• r1(z) fails since t1 < t3, t1 is aborted

t1

t2

t3

r1(x) r1(z)

w2(x) w2(y)

r3(y) w3(z) commit

abort

abort



Non-Locking Algorithms
• Optimistic protocols 

• Assume that conflicts are reasonably rare 
• Let transactions go ahead 
• But validate their serializability 



Non-Locking Algorithms
• Optimistic Protocols 

• Read phase 
• Transaction is executed, but all writes are not 

committed 
• Write “private items” 

• Validation phase 
• If a transaction is ready to commit, check whether its 

execution has been correct 
• Write phase 

• Write private items to database



Non-Locking Algorithms
• Backward oriented optimistic concurrency control 

(BOCC) 
• Validate a transaction against those transactions 

already committed 
• Forward oriented optimistic concurrency control 

(FOCC) 
• Validate a transaction against those transactions 

that are in their read phase



Non-Locking Algorithms
• BOCC:  

• The validate-write phase needs to be atomic 
• Transaction j is validated if for every committed 

transaction i: 
• i has ended before j started 

• or 
• The pages touched by j have not been written 

by i 
• Thus, j had no chance to read from i



Non-Locking Algorithms

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(x) validate

w1(x)validate

read phase write phase

r2(z) validate

r3(y) abort

t4
r4(x) validate w4(x)

t3 is aborted because its read set {x,y} overlaps with the write set {x} of t1



Non-Locking Algorithms
• Schedule  

• … r2(x) … w1(x) …validate1… validate2 …  
• t2 will get aborted as its read set overlaps with 

the write set of t1. 
• This is clear once t1 writes 

• Therefore Forward-oriented optimistic Concurrency 
Control (FOCC



Non-Locking Algorithms
• Forward-oriented concurrency control  

• Accept a transaction tj if for all transactions ti that 
are currently reading 
• Writeset(tj) is disjoint from Readset(ti) at 

current time 
• Example: FOCC accepts all read-only transactions



Non-Locking Algorithms
t1 validates its 
write set {x} against  
the current read 
sets {y}

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)



Non-Locking Algorithms
t2 validates its 
write set {z} against  
the current read 
sets {z, x, y} and 
discovers that they 
are not disjoint. 

FOCC allows: 
t2 could abort 
t3 could abort 

Chooses to abort t3

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)



Non-Locking Algorithms
t4 validates its write 
set against current 
read sets {x, y, z}  
because of t5.  

Instead of aborting,  
we can have t4 wait 
until t4 terminates 

Then t4 validates

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)



Multi-version Concurrency 
Control

• Allow a single value to have multiple versions 
• Multi-version schedule 

• Note values read 
• Example 

• r1(x0)w1(x1)r2(x1)w2(y2)r1(y0)w1(z1)c1c2 
• Transaction 1 reads an earlier version than 

the value written by transaction 2



Multi-version Concurrency 
Control

• Multi-version timestamp ordering (MVTO) 
• Each version carries the timestamp of the transaction that 

created it 
• Each read reads the last version that was written before the 

timestamp of the transaction 
• Writes: 

• wi(x) 
• If there was a read rj(xk) with  

• time(tk)<time(ti)<time(tj)  
• abort ti 
• Otherwise, write x with timestamp ts(tk)



Multi-version Concurrency 
Control

• In order to avoid dirty reads:  
• Delay commits until all other transactions that 

have written a new version of what we read have 
finished



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t3 needs to wait until t2 terminates, because it read x2 
Since its timestamp is larger, it has to read this value instead of x0

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t4 is a “late writer”. t5 (with a later timestamp) has already read y2, and t4  
can no longer change it. So, t4 needs to be aborted.

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Write-Ahead Logging 
• A family of protocols that use a log 

• Recovery after a crash 
• Aborting transactions 

• Each site writes the operation it is about to perform 
on a page to the write-ahead log



Write-Ahead Logging 
• ARIES 

• Write-ahead log 
• Repeating history 

• After crash, retrace the actions to bring 
database up to the moment of crash 

• Undo transactions that were then pending 
• Logging Undo operations 

• Log undo operations in order to avoid 
repeating actions after repeated crashes



Write-Ahead Logging 
• ARIES 

• Dirty Page Table (DPT) 
• Transaction Table (TT) 
• Log 

• Sequence Number, Transaction ID, Page ID, 
Redo, Undo, Previous Sequence Number 
• Redo and Undo: Information to redo and 

undo a transaction



Write-Ahead Logging 
• ARIES 

• Analysis 
• Calculate the necessary information from the 

log 
• From last checkpoint: 

• Add all transactions started to TT 
• Remove transactions in the TT when 

finding a END LOG statement 
• Update the dirty pages table



Write-Ahead Logging 
• ARIES 

• Redo 
• Use the DPT to calculate the minimal 

sequence number of a dirty page 
• From this sequence number, redo operations 

for pages in the DPT



Write-Ahead Logging 
• ARIES 

• Undo 
• Undo the changes of uncommitted transactions 
• Run backward through the log  

• For each transaction in the TT 
• Undo the change for each touched page 

• Write the changes in a compensation log 
• (In case of a crash during recovery)



Distributed Transactions
• Issues: 

• Distributed decision making 
• by leader: Leader election 
• Commit protocols 

• Distributed locks: 
• Deadlock detection  
• Deadlock avoidance 

• Distributed checkpoints



Distributed Transactions
• Distributed commit 

• All members of a group need to perform an 
action or none 

• One phase commit: 
• Single coordinator 

• Sends a “commit” or a “not-commit” 
message 

• Has no feedback from participants 
• Cannot be used in practice



Distributed Transactions
• Two phase commit (Jim Gray) 

• Phase 1:  
• Coordinator sends vote request 
• Participants vote on whether they want to 

commit 
• Phase 2: 

• Coordinator decides vote 
• Single no is a veto 

• Coordinator sends participants message



Distributed Transactions



Distributed Transactions



Distributed Transactions
• 2PC can have problems with failures 

• Failure of coordinator or participants leads to 
blocking



Distributed Transactions
INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Participant in INIT waiting for 

request to vote 
• Can locally abort transaction

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Coordinator in WAIT waiting for 

answers 
• Can send Global_Abort

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Participant in READY waiting for 

coordinator 
• Cannot decide 

• Block until coordinator 
recovers 

• Or talk to other participant 
• If all participants are in state 

READY, no decision can be 
taken

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Non-blocking solution 

• Use multicast primitive 
• Receiver immediately multicasts received 

message to all participants



Distributed Transactions
• Three Phase Commit 

• Crashed coordinator might leave participants 
hanging Solution is to add another phase 



Distributed Time Order
• TO rule:  

• If pi(x) and qj(x) are operations in conflict then 

• Use Lamport clock to generate time stamps 

• Both transactions have local timestamp 1 but 
are ordered so that 2nd transaction aborts

pi(x) is executed before qj(x) () ts(ti) < ts(tj)

Server 1 : r1(x) w2(x) . . .

Server 2 : r2(y) w1(y) . . .



Distributed Transactions
• Locking protocols 

• Need to reach global decision when to release a 
lock 

• Primary 2PL: 
• All locking is done at a primary site 

• Distributed 2PL 
• Strict 2PL with commit releases locks



Distributed Transactions
• Optimistic protocols 

• Protect validation / write phase by using 2PC or 
3PC



Distributed Transactions
• Distributed deadlock handling 

• Detection 
• Time-outs 
• Edge chasing 

• Blocked transaction sends out a probe to all transactions it is 
waiting for 

• Those forward probe 
• When probe returns to sending transaction: 

• Deadlock exist 
• Path(s) of returned probe(s) indicates which transaction to abort 

• Path pushing 
• Collect local “waits-for” graphs at a single server


