
Distributed
Transaction Processes

Distributed Systems
Santa Clara University

Transaction Concept
• Transactions:

• Transparent concurrency
• Transparent recovery

• Atomic
• Transaction is completely executed or not at all

• Consistency
• Consistency constraints are preserved by a transaction

• Isolation
• Each transaction behaves as if it were operating alone

• Durability
• Updates made by a committed transaction are durable

Transaction Concept
• Computational model

• Elementary operations on data objects
• Transactions are sequences of these operations
• The execution of several transactions is

described by a schedule or history
• Histories where ACID properties are guaranteed

are correct
• Generate algorithms / protocols

Transaction Concept
• Computational model: Page model

• Transaction is a sequence of elementary
operations
• read, write

• on a single page
• Can talk about the value of a page at each level

in the history

Transaction Concept
• Computational model

• Example transaction:
• t = r(x)r(y)r(z)w(u)w(x)

• Transaction reads three values
• Can use these values to write new values
• One value has potentially changed

Transaction Concept
• Not necessary to assume that the steps in a

transaction are sequential
• Just need a partial order between the steps

Concurrency Control
• Canonical Concurrency Problems

• Lost update problem

t1:
r(x)

x+=30

w(x)

t2:

r(x)

x+=120

w(x)

Concurrency Control
• Inconsistent read problem

• Assume the constraint x+y==0

t1:

r(x)
r(y)

t2:
r(x)
x-=10
w(x)
r(y)
y+=10

w(y)

Concurrency Control
• Dirty read problem (Reading uncommitted data)

t1:
r(x)
x+=100
w(x)

rollback

t2:

r(x)

x-=100

w(x)

Concurrency Control
• History

• The sequence of all elementary operations of all
transactions

• Schedule
• A prefix of a history

• Serial History
• A history where all elementary operations of one

transaction are done before those of another
transaction or where all elementary operations of one
transaction are done after those of another transaction

Concurrency Control
• Herbrand Semantics

• A notion to make precise what is the result of a
history without specifying values

• Because we could change a non-serial history to
a serial one by altering values written

• For example, set all transfer, withdrawal, and
deposit amounts to 0 to make any history in a
bank database serial

Concurrency Control
• Herbrand value of a read is the Herbrand value of

the last write
• Herbrand value of a write is a generic functions of

all reads of the executor of the write

Final state serializability
• Final state serializability

• Final state equivalence
• Two histories are final state equivalent if

• They contain the same operations
• They have the same Herbrand semantics

Final state serializability
• Final state equivalency example

s1 = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)

s2 = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)

Final state serializability
• Final state equivalency example

s1 = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)

s2 = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)

Herbrand value of x depends on what 1 saw, which is
x unaltered in both schedules
Herbrand value of y depends on what 1 saw
Herbrand value of z depends on what 2 saw, which is
x and y unaltered

Final state serializability
• Finite state equivalency example:

sa = r1(x)r2(y)w1(y)w2(y)

sb = r1(x)w1(y)r2(y)w2(y)

Final state serializability
• Finite state equivalency example:

sa = r1(x)r2(y)w1(y)w2(y)

sb = r1(x)w1(y)r2(y)w2(y)

The Herbrand value of y is the original value of y in the
first schedule and depends on the write by 1 in the second
schedule.

Final state serializability
• We can decide final state serializability with the Life-

Reads-From relation
• Reads-from

• A transaction reads a value after it has been last
written by another transaction

• Alive
• Final value depends on the transaction

• Two schedules are final state serializable iff
• they consist of the same operations
• they have the same life-reads-from relation

Final state serializability
• A schedule is final-state serializable

• IFF it is final state equivalent to a serial schedule
• IFF it has the same life-read-from relation as a

serial schedule

View Serializability
• Final state serializability is still insufficient

• Lost update anomaly is detected (good)

• Inconsistent read is still allowed by final state
serializability (bad)

r1(x)r2(x)w1(x)w2(x)

r2(x)w2(x)r1(x)r1(y)r2(y)w2(y)

Transaction 1 makes an inconsistent read, but the final state ignores
it.

View Serializability
• View equivalence

• Two schedules are view equivalent if
• They have the same set of operations
• The Herbrand values of their schedules are

equal
• The Herbrand values at each read or write step

are equivalent

View Serializability
• View equivalence

• Two schedules are view equivalent
• IFF they have the same read-from relation

Conflict Serializability
• Easier to test than view serializability
• Conflict relation:

• Two operations are in conflict
• If they access the same data item
• At least one of them is a write

• Conflict relation: transitive closure
• Conflict equivalence

• Two schedules are conflict equivalent
• They have the same set of operations
• Their conflict set is the same

Conflict Serializability
w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)

Conflict Serializability
w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)

{(w1(x), r2(x)), (w1(x), w3(x)), (r2(x), w3(x)), (w2(y), r1(y)), (w2(y), w1(y)), (w1(y), w3(y))}

Conflict Serializability
• A schedule is conflict serializable

• IFF it is conflict equivalent to a serial schedule

Conflict Serializability
• Algebraic notation:

• C1
• C2
• C3

ri(x)rj(y) ⇠ rj(y)ri(x) if i 6= j

ri(x)wj(y) ⇠ wj(y)ri(x) if i 6= j and x 6= y

wi(x)wj(y) ⇠ wj(y)wi(x) if i 6= j and x 6= y

Conflict Serializability
• Two schedules with the same operations are

equivalent
• Iff one can be transformed to the other using the

commutativity rules

Commit Serializability
• Conflict serializability does not detect the dirty read

problem
• Since it does not pay attention to commit and

abort operations

• Correctness criterion should only take committed
transactions into account

• Since systems can crash
• All prefixes of a schedule have to be correct

Commit Serializability
• A schedule is commit conflict serializable iff

• Projection on committed transactions is conflict
serializable

Concurrency Control
Algorithms

• How to deal with bad situations:
• Strategy 1: Never get into a bad situation
• Strategy 2: Know how to get out of a bad

situation (rollback)

Concurrency Control
Algorithms

• Locking scheduler: Never get into a bad situation
• Use locks on data items

• Shared / Read Locks
• Exclusive / Write Locks

• Locking problems:
• Need to make sure that transactions release locks

• Kill all Zombies!!!!!
• Need to avoid deadlock
• Need to avoid life lock

Locking Algorithms
• No restrictions on locking are hard to get right
• Two phase locking (2PL)

• All transactions pass first through a phase
• where they only acquire locks

• Then through a phase
• where they only release locks

• A schedule with 2PL is conflict serializable
• But not every conflict serializable schedule can

be created with 2PL

Locking Algorithms
2PL

Locking Algorithms
• 2PL

• Dirty reads:
• Allows transactions to read from transaction that are

later aborted
• Strict 2PL

• Release locks only at the end of a transaction
• Allows easy automatization

• Application wants to read an item
• Automatically request lock

• When committing, automatically release all locks

Locking Algorithms

Locking Algorithms
• Deadlock Handling

• Normal lock requests can lead to deadlock

• Yields

• l read-lock
• L write-lock

r1(x)w2(y)w2(x)c2w1(y)c1

l1(x)r1(x)L2(y)w2(y) . . .

Locking Algorithms
• Deadlock handling

• Lock conversion can also lead to deadlock

t1 : r1(x)w1(x)

t2 : r2(x)w2(x)

l1(x)r1(x)l2(x)r2(x)????

Locking Algorithms
• Deadlock Detection

• Wait for graph
• Nodes are transactions
• Edges represent “waiting for”

t1 : r1(x)w1(x)

t2 : r2(x)w2(x)

l1(x)r1(x)l2(x)r2(x)????

t1 t2

x

x

Locking Algorithms
• Deadlock detection

• Continuous detection
• WFT is always kept cycle free

• Periodic detection
• Check WFT for cycles periodically

Locking Algorithms
• Deadlock detection

• If a scheduler detects a cycle:
• Aborts a victim transaction

• according to heuristics
• Last blocked
• Random
• Youngest
• Minimum locks
• Minimum work
• Most cycles
• Most edges

Locking Algorithms
• Life-lock

• All victim selection mechanism can create live-
lock
• Incarnations of the same transaction are

always chosen
• Various heuristics to avoid life-lock

Locking Algorithms
t1 t2 t3

t4 t5 t6

Most cycle heuristics:
Remove dashed edge by aborting

t2 or t5

Locking Algorithms

t1 t2 t3

t4 t5 t6

t7

t8

t10

t9

Dashed cycle breaks the most cycles

Locking Algorithms

t1

t2t3

t4

t5

t6

WFG with cycle and two
candidate victims (t1, t2)

Most edges option:
Abort t1: Two edges remain
Abort t2: Four edges remain

Hence: Abort t1

Locking Algorithms
• Deadlock prevention

• Abort transaction whose lock request would
create a cycle

Non-Locking Algorithms
• Timestamp ordering

• Each transactions gets a unique timestamp
• Timestamp Ordering rule

• All operations inherit their timestamp from the
transaction

• If two operations are in conflict, then the one
with the smaller timestamp has to be done first

• If this impossible, abort the offending
transaction

Non-Locking Algorithms
• Basic time-stamp ordering (BTO)

• For all data items, maintain the largest timestamp
for
• a read operation: max-r-scheduled(x)
• a write operation: max-w-scheduled(x)

Non-Locking Algorithms
• BTO: Transactions can be too late and are aborted

• w2(x) succeeds since t1 < t2
• r3(y) succeeds since t3 < t2
• w2(y) fails since t2<t3, t2 is aborted
• r1(z) fails since t1 < t3, t1 is aborted

t1

t2

t3

r1(x) r1(z)

w2(x) w2(y)

r3(y) w3(z) commit

abort

abort

Non-Locking Algorithms
• Optimistic protocols

• Assume that conflicts are reasonably rare
• Let transactions go ahead
• But validate their serializability

Non-Locking Algorithms
• Optimistic Protocols

• Read phase
• Transaction is executed, but all writes are not

committed
• Write “private items”

• Validation phase
• If a transaction is ready to commit, check whether its

execution has been correct
• Write phase

• Write private items to database

Non-Locking Algorithms
• Backward oriented optimistic concurrency control

(BOCC)
• Validate a transaction against those transactions

already committed
• Forward oriented optimistic concurrency control

(FOCC)
• Validate a transaction against those transactions

that are in their read phase

Non-Locking Algorithms
• BOCC:

• The validate-write phase needs to be atomic
• Transaction j is validated if for every committed

transaction i:
• i has ended before j started

• or
• The pages touched by j have not been written

by i
• Thus, j had no chance to read from i

Non-Locking Algorithms

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(x) validate

w1(x)validate

read phase write phase

r2(z) validate

r3(y) abort

t4
r4(x) validate w4(x)

t3 is aborted because its read set {x,y} overlaps with the write set {x} of t1

Non-Locking Algorithms
• Schedule

• … r2(x) … w1(x) …validate1… validate2 …
• t2 will get aborted as its read set overlaps with

the write set of t1.
• This is clear once t1 writes

• Therefore Forward-oriented optimistic Concurrency
Control (FOCC

Non-Locking Algorithms
• Forward-oriented concurrency control

• Accept a transaction tj if for all transactions ti that
are currently reading
• Writeset(tj) is disjoint from Readset(ti) at

current time
• Example: FOCC accepts all read-only transactions

Non-Locking Algorithms
t1 validates its
write set {x} against
the current read
sets {y}

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)

Non-Locking Algorithms
t2 validates its
write set {z} against
the current read
sets {z, x, y} and
discovers that they
are not disjoint.

FOCC allows:
t2 could abort
t3 could abort

Chooses to abort t3

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)

Non-Locking Algorithms
t4 validates its write
set against current
read sets {x, y, z}
because of t5.

Instead of aborting,
we can have t4 wait
until t4 terminates

Then t4 validates

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)

Multi-version Concurrency
Control

• Allow a single value to have multiple versions
• Multi-version schedule

• Note values read
• Example

• r1(x0)w1(x1)r2(x1)w2(y2)r1(y0)w1(z1)c1c2
• Transaction 1 reads an earlier version than

the value written by transaction 2

Multi-version Concurrency
Control

• Multi-version timestamp ordering (MVTO)
• Each version carries the timestamp of the transaction that

created it
• Each read reads the last version that was written before the

timestamp of the transaction
• Writes:

• wi(x)
• If there was a read rj(xk) with

• time(tk)<time(ti)<time(tj)
• abort ti
• Otherwise, write x with timestamp ts(tk)

Multi-version Concurrency
Control

• In order to avoid dirty reads:
• Delay commits until all other transactions that

have written a new version of what we read have
finished

Multi-version Concurrency
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)

Multi-version Concurrency
Control

t3 needs to wait until t2 terminates, because it read x2
Since its timestamp is larger, it has to read this value instead of x0

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)

Multi-version Concurrency
Control

t4 is a “late writer”. t5 (with a later timestamp) has already read y2, and t4
can no longer change it. So, t4 needs to be aborted.

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)

Multi-version Concurrency
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)

Multi-version Concurrency
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)

Multi-version Concurrency
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)

Write-Ahead Logging
• A family of protocols that use a log

• Recovery after a crash
• Aborting transactions

• Each site writes the operation it is about to perform
on a page to the write-ahead log

Write-Ahead Logging
• ARIES

• Write-ahead log
• Repeating history

• After crash, retrace the actions to bring
database up to the moment of crash

• Undo transactions that were then pending
• Logging Undo operations

• Log undo operations in order to avoid
repeating actions after repeated crashes

Write-Ahead Logging
• ARIES

• Dirty Page Table (DPT)
• Transaction Table (TT)
• Log

• Sequence Number, Transaction ID, Page ID,
Redo, Undo, Previous Sequence Number
• Redo and Undo: Information to redo and

undo a transaction

Write-Ahead Logging
• ARIES

• Analysis
• Calculate the necessary information from the

log
• From last checkpoint:

• Add all transactions started to TT
• Remove transactions in the TT when

finding a END LOG statement
• Update the dirty pages table

Write-Ahead Logging
• ARIES

• Redo
• Use the DPT to calculate the minimal

sequence number of a dirty page
• From this sequence number, redo operations

for pages in the DPT

Write-Ahead Logging
• ARIES

• Undo
• Undo the changes of uncommitted transactions
• Run backward through the log

• For each transaction in the TT
• Undo the change for each touched page

• Write the changes in a compensation log
• (In case of a crash during recovery)

Distributed Transactions
• Issues:

• Distributed decision making
• by leader: Leader election
• Commit protocols

• Distributed locks:
• Deadlock detection
• Deadlock avoidance

• Distributed checkpoints

Distributed Transactions
• Distributed commit

• All members of a group need to perform an
action or none

• One phase commit:
• Single coordinator

• Sends a “commit” or a “not-commit”
message

• Has no feedback from participants
• Cannot be used in practice

Distributed Transactions
• Two phase commit (Jim Gray)

• Phase 1:
• Coordinator sends vote request
• Participants vote on whether they want to

commit
• Phase 2:

• Coordinator decides vote
• Single no is a veto

• Coordinator sends participants message

Distributed Transactions

Distributed Transactions

Distributed Transactions
• 2PC can have problems with failures

• Failure of coordinator or participants leads to
blocking

Distributed Transactions
INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant

Distributed Transactions
• Participant in INIT waiting for

request to vote
• Can locally abort transaction

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant

Distributed Transactions
• Coordinator in WAIT waiting for

answers
• Can send Global_Abort

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant

Distributed Transactions
• Participant in READY waiting for

coordinator
• Cannot decide

• Block until coordinator
recovers

• Or talk to other participant
• If all participants are in state

READY, no decision can be
taken

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant

Distributed Transactions
INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant

Distributed Transactions
• Non-blocking solution

• Use multicast primitive
• Receiver immediately multicasts received

message to all participants

Distributed Transactions
• Three Phase Commit

• Crashed coordinator might leave participants
hanging Solution is to add another phase

Distributed Time Order
• TO rule:

• If pi(x) and qj(x) are operations in conflict then

• Use Lamport clock to generate time stamps

• Both transactions have local timestamp 1 but
are ordered so that 2nd transaction aborts

pi(x) is executed before qj(x) () ts(ti) < ts(tj)

Server 1 : r1(x) w2(x) . . .

Server 2 : r2(y) w1(y) . . .

Distributed Transactions
• Locking protocols

• Need to reach global decision when to release a
lock

• Primary 2PL:
• All locking is done at a primary site

• Distributed 2PL
• Strict 2PL with commit releases locks

Distributed Transactions
• Optimistic protocols

• Protect validation / write phase by using 2PC or
3PC

Distributed Transactions
• Distributed deadlock handling

• Detection
• Time-outs
• Edge chasing

• Blocked transaction sends out a probe to all transactions it is
waiting for

• Those forward probe
• When probe returns to sending transaction:

• Deadlock exist
• Path(s) of returned probe(s) indicates which transaction to abort

• Path pushing
• Collect local “waits-for” graphs at a single server

