
Distributed Relational 
Databases

Thomas Schwarz, SJ



Why?
• Parallelism is a simple way to scale up performance


• Example: Google web searches implemented via the 
Google File System


• Every file is stored at at least three servers (~2010)


• Unlikely to need to access an overloaded server


• Capacity of each server only used a little


• Because bandwidth is more important than storage 
capacity



Why?
• Local accesses


• A global enterprise has users around the world


• To save latencies, might create data centers around 
the world as well


• Central databases are then replicated in those data 
centers



Why?
• Heterogeneity


• Your company buys a competitor


• Now you have two customer databases


• They contain different types of information


• Differences in the details, at the macro level same 
functionality


• Difficult to combine the databases


• Easier:


• "Federate them"



Client Server Systems
• Two-tier architecture


• Client has client DBMS


• Can communicate by issuing SQL commands 


• Servers have server DBMS

Client Client Client Client Client

Server Server

Client Client

Server



Client Server Systems
• Two architectures:


• Every client can demand services from every server


• Every client has a home server that can forward 
demands to another server

Client Client Client Client Client

Server Server

Client Client

Server



P2P Systems
• Server components are distributed over clients


• Might or might not have a global directory replicated at 
all clients



What Makes Distributed 
Databases Difficult 

• Finding information


• Coordination


• Updating the database should leave it into a coherent 
state


• Example: Global email system


• Use a VPN to go to Mumbai and send an email


• Disconnect the VPN and find out that you did not yet 
send the email



Distributing Data
• Replication


• Motivation: Speed of access to data


• Fragmentation


• Break relations up



Distributing Data
• Horizontal fragmentation


• Divide the rows into different fragments


• Example: Employees Database


• Primary decomposition of Employees Table based 
on emp_no

100254 José Miguel Ocampo M 1967-05-08

100256 Angh Pham F 1959-12-04

100257 Joseph Smith M 1947-08-28

100258 Witold Litin M 1998-02-27

100259 Alethea Parker F 2001-05-12

100260 Deborah Rabin F 1993-08-19

100261 Fulton Dagger M 1982-06-21

100254 José Miguel Ocampo M 1967-05-08

100256 Angh Pham F 1959-12-04

100257 Joseph Smith M 1947-08-28

100258 Witold Litin M 1998-02-27

100259 Alethea Parker F 2001-05-12

100260 Deborah Rabin F 1993-08-19

100261 Fulton Dagger M 1982-06-21



Distributing Data
• Example: Employees Database


• Since we frequently join on emp_no, we should now do 
secondary fragmentation on emp_no of salary

100254

100256

100257
100258

1985-03-19 1985-12-31
1986-01-01 1986-12-31100254

39,000.00
39,500.00

1987-01-01 1987-12-31100254 40,500.00
1988-01-01 1988-12-31100254 41,700.00

100256
100256

100256
100256
100256

1986-01-01 1986-12-31 63,000.00
1987-01-01 1987-12-31 65,500.00
1988-01-01 1988-12-31 69,000.00

1984-01-01 1985-12-31 62,000.00
1983-01-01 1983-12-31 60,200.00
1982-07-01 1982-12-31 58,750.00

1988-09-01 1988-12-31 89,000.00

1986-01-01 1986-12-31 63,000.00
1987-01-01 1987-12-31 65,500.00
1988-01-01 1988-12-31 69,000.00

1984-01-01 1984-12-31 44,500.00
1983-11-01 1983-12-31 44,200.00

100258

100258
100258
100258

100256 1985-01-01 1985-12-31 62,100.00

1985-01-01 1985-12-31 44,500.00100258

100254

100256

1985-03-19 1985-12-31
1986-01-01 1986-12-31100254

39,000.00
39,500.00

1987-01-01 1987-12-31100254 40,500.00
1988-01-01 1988-12-31100254 41,700.00

100256
100256

100256
100256
100256

1986-01-01 1986-12-31 63,000.00
1987-01-01 1987-12-31 65,500.00
1988-01-01 1988-12-31 69,000.00

1984-01-01 1985-12-31 62,000.00
1983-01-01 1983-12-31 60,200.00
1982-07-01 1982-12-31 58,750.00

100256 1985-01-01 1985-12-31 62,100.00

100258

1986-01-01 1986-12-31 63,000.00
1987-01-01 1987-12-31 65,500.00
1988-01-01 1988-12-31 69,000.00

1984-01-01 1984-12-31 44,500.00
1983-11-01 1983-12-31 44,200.00

100258

100258
100258
100258

1985-01-01 1985-12-31 44,500.00100258

100257 1988-09-01 1988-12-31 89,000.00
100259 1986-03-01 1986-12-31 89,000.00

1987-01-01 1987-12-31
1988-01-01 1988–05-31

100259
100259

98,000.00
99,900.00 100259 1986-03-01 1986-12-31 89,000.00

1987-01-01 1987-12-31
1988-01-01 1988–05-31

100259
100259

98,000.00
99,900.00



Distributing Data
• Horizontal fragmentation


• Use a (simple) predicate on a primary code on the 
principal relation


• In our example:  emp_no % 2 == 0, emp_no%2==1


• Use derived fragmentation for other tables



Distributing Data
• Vertical fragmentation


• Break table into different attributes


• Need to repeat primary keys


• (Or introduce a new artificial tuple identifier 
functioning as a primary key)


• Keep attributes together that appear in many 
projections and selections together



Distributing Data
• Example: Employees Table

100254 José Miguel Ocampo M 1967-05-08

100256 Angh Pham F 1959-12-04

100257 Joseph Smith M 1947-08-28

100258 Witold Litin M 1998-02-27

100259 Alethea Parker F 2001-05-12

100260 Deborah Rabin F 1993-08-19

100261 Fulton Dagger M 1982-06-21

100254 José Miguel Ocampo

100256 Angh Pham

100257 Joseph Smith

100258 Witold Litin

100259 Alethea Parker

100260 Deborah Rabin

100261 Fulton Dagger

M 1967-05-08

F 1959-12-04

M 1947-08-28

M 1998-02-27

F 2001-05-12

F 1993-08-19

M 1982-06-21

100254

100256

100257

100258

100259

100260

100261



Distributing Data
• Given statistics on queries, use a clustering algorithm to 

decide the break-up



Distributing Data
• It is possible to combine vertical and horizontal 

fragmentation



Query Processing
• Query plans now need to include the costs of sending 

data over a network


• Usually, have different costs for what was previously 
the same query plan



Transaction 
Processing



Transaction Concept
• Transactions:

• Transparent concurrency

• Transparent recovery


• Atomic

• Transaction is completely executed or not at all


• Consistency

• Consistency constraints are preserved by a transaction


• Isolation

• Each transaction behaves as if it were operating alone


• Durability

• Updates made by a committed transaction are durable



Transaction Concept

• Computational model


• Elementary operations on data objects


• Transactions are sequences of these operations


• The execution of several transactions is described by a 
schedule or history


• Histories where ACID properties are guaranteed are 
correct


• Generate algorithms / protocols



Transaction Concept

• Computational model: Page model


• Transaction is a sequence of elementary operations


• read, write


• on a single page


• Can talk about the value of a page at each level in the 
history



Transaction Concept

• Computational model


• Example transaction:


• t = r(x)r(y)r(z)w(u)w(x)


• Transaction reads three values


• Can use these values to write new values


• One value has potentially changed


•



Transaction Concept
• Not necessary to assume that the steps in a transaction 

are sequential


• Just need a partial order between the steps



Concurrency Control
• Canonical Concurrency Problems


• Lost update problem

t1: 
r(x) 

x+=30 

w(x)

t2: 

r(x) 

x+=120 

w(x)



Concurrency Control
• Inconsistent read problem


• Assume the constraint x+y==0

t1: 

r(x) 
r(y)

t2: 
r(x) 
x-=10 
w(x) 
r(y) 
y+=10 

w(y)



Concurrency Control
• Dirty read problem (Reading uncommitted data)

t1: 
r(x) 
x+=100 
w(x) 

rollback

t2: 

r(x) 

x-=100 

w(x) 



Concurrency Control
• History


• The sequence of all elementary operations of all 
transactions


• Schedule


• A prefix of a history


• Serial History


• A history where all elementary operations of one 
transaction are done before those of another transaction 
or where all elementary operations of one transaction are 
done after those of another transaction



Concurrency Control

• Herbrand Semantics


• A notion to make precise what is the result of a history 
without specifying values


• Because we could change a non-serial history to a 
serial one by altering values written


• For example, set all transfer, withdrawal, and deposit 
amounts to 0 to make any history in a bank database 
serial



Concurrency Control

• Herbrand value of a read is the Herbrand value of the last 
write


• Herbrand value of a write is a generic functions of all 
reads of the executor of the write



Final state serializability

• Final state serializability


• Final state equivalence


• Two histories are final state equivalent  if


• They contain the same operations


• They have the same Herbrand semantics



Final state serializability

• Final state equivalency example

s1 = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)

s2 = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)



Final state serializability
• Final state equivalency example

s1 = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)

s2 = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)

Herbrand value of x depends on what 1 saw, which is

x unaltered in both schedules

Herbrand value of y depends on what 1 saw

Herbrand value of z depends on what 2 saw, which is 

x and y unaltered

 



Final state serializability
• Finite state equivalency example:

sa = r1(x)r2(y)w1(y)w2(y)

sb = r1(x)w1(y)r2(y)w2(y)



Final state serializability
• Finite state equivalency example:

sa = r1(x)r2(y)w1(y)w2(y)

sb = r1(x)w1(y)r2(y)w2(y)

The Herbrand value of y is the original value of y in the 

first schedule and depends on the write by 1 in the second

schedule.



Final state serializability
• We can decide final state serializability with the Life-Reads-From 

relation


• Reads-from


• A transaction reads a value after it has been last written by 
another transaction


• Alive


• Final value depends on the transaction


• Two schedules are final state serializable iff 


• they consist of the same operations


• they have the same life-reads-from relation



Final state serializability

• A schedule is final-state serializable


• IFF it is final state equivalent to a serial schedule


• IFF it has the same life-read-from relation as a serial 
schedule



View Serializability
• Final state serializability is still insufficient


• Lost update anomaly is detected (good)


• Inconsistent read is still allowed by final state 
serializability (bad)

r1(x)r2(x)w1(x)w2(x)

r2(x)w2(x)r1(x)r1(y)r2(y)w2(y)

Transaction 1 makes an inconsistent read, but the final state ignores 
it. 



View Serializability

• View equivalence


• Two schedules are view equivalent if


• They have the same set of operations


• The Herbrand values of their schedules are equal


• The Herbrand values at each read or write step are 
equivalent



View Serializability

• View equivalence


• Two schedules are view equivalent


• IFF they have the same read-from relation



Conflict Serializability
• Easier to test than view serializability


• Conflict relation:


• Two operations are in conflict


• If they access the same data item 


• At least one of them is a write


• Conflict relation: transitive closure


• Conflict equivalence


• Two schedules are conflict equivalent


• They have the same set of operations


• Their conflict set is the same



Conflict Serializability
w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)



Conflict Serializability
w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)

{(w1(x), r2(x)), (w1(x), w3(x)), (r2(x), w3(x)), (w2(y), r1(y)), (w2(y), w1(y)), (w1(y), w3(y))}



Conflict Serializability
• A schedule is conflict serializable 


• IFF it is conflict equivalent to a serial schedule



Conflict Serializability
• Algebraic notation:


• C1


• C2


• C3

ri(x)rj(y) ⇠ rj(y)ri(x) if i 6= j

ri(x)wj(y) ⇠ wj(y)ri(x) if i 6= j and x 6= y

wi(x)wj(y) ⇠ wj(y)wi(x) if i 6= j and x 6= y



Conflict Serializability
• Two schedules with the same operations are equivalent


• Iff one can be transformed to the other using the 
commutativity rules



Commit Serializability
• Conflict serializability does not detect the dirty read 

problem 


• Since it does not pay attention to commit and abort 
operations


• Correctness criterion should only take committed 
transactions into account


• Since systems can crash


• All prefixes of a schedule have to be correct



Commit Serializability
• A schedule is commit conflict serializable iff


• Projection on committed transactions is conflict 
serializable



Concurrency Control 
Algorithms

• How to deal with bad situations:


• Strategy 1: Never get into a bad situation


• Strategy 2: Know how to get out of a bad situation 
(rollback)



Concurrency Control 
Algorithms

• Locking scheduler: Never get into a bad situation


• Use locks on data items


• Shared / Read Locks


• Exclusive / Write Locks


• Locking problems:


• Need to make sure that transactions release locks


• Kill all Zombies!!!!!


• Need to avoid deadlock


• Need to avoid life lock



Locking Algorithms
• No restrictions on locking are hard to get right


• Two phase locking  (2PL)


• All transactions pass first through a phase 


• where they only acquire locks


• Then through a phase


• where they only release locks


• A schedule with 2PL is conflict serializable


• But not every conflict serializable schedule can be 
created with 2PL



Locking Algorithms
2PL



Locking Algorithms
• 2PL


• Dirty reads:


• Allows transactions to read from transaction that are later 
aborted


• Strict 2PL


• Release locks only at the end of a transaction


• Allows easy automatization


• Application wants to read an item


• Automatically request lock


• When committing, automatically release all locks



Locking Algorithms



Locking Algorithms
• Deadlock Handling


• Normal lock requests can lead to deadlock


• Yields


• l read-lock


• L write-lock

r1(x)w2(y)w2(x)c2w1(y)c1

l1(x)r1(x)L2(y)w2(y) . . .



Locking Algorithms
• Deadlock handling


• Lock conversion can also lead to deadlock

t1 : r1(x)w1(x)

t2 : r2(x)w2(x)

l1(x)r1(x)l2(x)r2(x)????



Locking Algorithms
• Deadlock Detection


• Wait for graph


• Nodes are transactions


• Edges represent “waiting for”

t1 : r1(x)w1(x)

t2 : r2(x)w2(x)

l1(x)r1(x)l2(x)r2(x)????

t1 t2

x

x



Locking Algorithms

• Deadlock detection


• Continuous detection


• WFT is always kept cycle free


• Periodic detection


• Check WFT for cycles periodically



Locking Algorithms
• Deadlock detection


• If a scheduler detects a cycle:


• Aborts a victim transaction 


• according to heuristics


• Last blocked


• Random


• Youngest


• Minimum locks


• Minimum work


• Most cycles


• Most edges



Locking Algorithms
• Life-lock


• All victim selection mechanism can create live-lock


• Incarnations of the same transaction are always 
chosen 


• Various heuristics to avoid life-lock



Locking Algorithms
t1 t2 t3

t4 t5 t6

Most cycle heuristics:

Remove dashed edge by aborting 


t2 or t5



Locking Algorithms

t1 t2 t3

t4 t5 t6

t7

t8

t10

t9

Dashed cycle breaks the most cycles



Locking Algorithms

t1

t2t3

t4

t5

t6

WFG with cycle and two 

candidate victims (t1, t2)


Most edges option:

Abort t1: Two edges remain

Abort t2: Four edges remain


Hence: Abort t1



Locking Algorithms
• Deadlock prevention


• Abort transaction whose lock request would create a 
cycle



Non-Locking Algorithms

• Timestamp ordering


• Each transactions gets a unique timestamp


• Timestamp Ordering rule


• All operations inherit their timestamp from the 
transaction


• If two operations are in conflict, then the one with 
the smaller timestamp has to be done first


• If this impossible, abort the offending transaction



Non-Locking Algorithms

• Basic time-stamp ordering (BTO)


• For all data items, maintain the largest timestamp for


• a read operation: max-r-scheduled(x)


• a write operation: max-w-scheduled(x)



Non-Locking Algorithms
• BTO: Transactions can be too late and are aborted


• w2(x) succeeds since t1 < t2

• r3(y) succeeds since t3 < t2

• w2(y) fails since t2<t3, t2 is aborted

• r1(z) fails since t1 < t3, t1 is aborted

t1

t2

t3

r1(x) r1(z)

w2(x) w2(y)

r3(y) w3(z) commit

abort

abort



Non-Locking Algorithms
• Optimistic protocols


• Assume that conflicts are reasonably rare


• Let transactions go ahead


• But validate their serializability



Non-Locking Algorithms
• Optimistic Protocols


• Read phase


• Transaction is executed, but all writes are not committed


• Write “private items”


• Validation phase


• If a transaction is ready to commit, check whether its 
execution has been correct


• Write phase


• Write private items to database



Non-Locking Algorithms
• Backward oriented optimistic concurrency control (BOCC)


• Validate a transaction against those transactions 
already committed


• Forward oriented optimistic concurrency control (FOCC)


• Validate a transaction against those transactions that 
are in their read phase



Non-Locking Algorithms
• BOCC: 


• The validate-write phase needs to be atomic


• Transaction j is validated if for every committed 
transaction i:


• i has ended before j started


• or


• The pages touched by j have not been written by i


• Thus, j had no chance to read from i



Non-Locking Algorithms

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(x) validate

w1(x)validate

read phase write phase

r2(z) validate

r3(y) abort

t4
r4(x) validate w4(x)

t3 is aborted because its read set {x,y} overlaps with the write set {x} of t1



Non-Locking Algorithms

• Schedule 


• … r2(x) … w1(x) …validate1… validate2 … 


• t2 will get aborted as its read set overlaps with the 
write set of t1.


• This is clear once t1 writes


• Therefore Forward-oriented optimistic Concurrency 
Control (FOCC)



Non-Locking Algorithms

• Forward-oriented concurrency control 


• Accept a transaction tj if for all transactions ti that are 
currently reading


• Writeset(tj) is disjoint from Readset(ti) at current time


• Example: FOCC accepts all read-only transactions



Non-Locking Algorithms
t1 validates its 
write set {x} against  
the current read 
sets {y}

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)



Non-Locking Algorithms
t2 validates its 
write set {z} against  
the current read 
sets {z, x, y} and 
discovers that they 
are not disjoint. 

FOCC allows: 
t2 could abort 
t3 could abort 

Chooses to abort t3

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)



Non-Locking Algorithms
t4 validates its write 
set against current 
read sets {x, y, z}  
because of t5.  

Instead of aborting,  
we can have t4 wait 
until t4 terminates 

Then t4 validates

t1

t2

t3

r1(x) r1(y)

r2(y) w2(z)

r3(z)

w1(x)validate

read phase write phase

r2(z) validate

abort

t4
r4(x) validate w4(x)r4(y)

t5
r5(x) r5(y)



Multi-version Concurrency 
Control

• Allow a single value to have multiple versions


• Multi-version schedule


• Note values read


• Example


• r1(x0)w1(x1)r2(x1)w2(y2)r1(y0)w1(z1)c1c2


• Transaction 1 reads an earlier version than the 
value written by transaction 2



Multi-version Concurrency 
Control

• Multi-version timestamp ordering (MVTO)


• Each version carries the timestamp of the transaction that created it


• Each read reads the last version that was written before the 
timestamp of the transaction


• Writes:


• wi(x)


• If there was a read rj(xk) with 


• time(tk)<time(ti)<time(tj) 


• abort ti


• Otherwise, write x with timestamp ts(tk)



Multi-version Concurrency 
Control

• In order to avoid dirty reads: 


• Delay commits until all other transactions that have 
written a new version of what we read have finished



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t3 needs to wait until t2 terminates, because it read x2 
Since its timestamp is larger, it has to read this value instead of x0

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t4 is a “late writer”. t5 (with a later timestamp) has already read y2, and t4  
can no longer change it. So, t4 needs to be aborted.

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Multi-version Concurrency 
Control

t1 and t2 are interleaved

t1
r1(x0) r1(y0)

t2
r2(x0) w2(x2) r2(y0) w2(y2)

t3
r3(x2) r3(z0)

t4
r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5
r5(y2) r5(z0)



Write-Ahead Logging 
• A family of protocols that use a log


• Recovery after a crash


• Aborting transactions


• Each site writes the operation it is about to perform on a 
page to the write-ahead log



Write-Ahead Logging 
• ARIES


• Write-ahead log


• Repeating history


• After crash, retrace the actions to bring database up 
to the moment of crash


• Undo transactions that were then pending


• Logging Undo operations


• Log undo operations in order to avoid repeating 
actions after repeated crashes



Write-Ahead Logging 

• ARIES


• Dirty Page Table (DPT)


• Transaction Table (TT)


• Log


• Sequence Number, Transaction ID, Page ID, Redo, 
Undo, Previous Sequence Number


• Redo and Undo: Information to redo and undo a 
transaction



Write-Ahead Logging 
• ARIES


• Analysis


• Calculate the necessary information from the log


• From last checkpoint:


• Add all transactions started to TT


• Remove transactions in the TT when finding a 
END LOG statement


• Update the dirty pages table



Write-Ahead Logging 
• ARIES


• Redo


• Use the DPT to calculate the minimal sequence 
number of a dirty page


• From this sequence number, redo operations for 
pages in the DPT



Write-Ahead Logging 
• ARIES


• Undo


• Undo the changes of uncommitted transactions


• Run backward through the log 


• For each transaction in the TT


• Undo the change for each touched page


• Write the changes in a compensation log


• (In case of a crash during recovery)



Distributed Transactions
• Issues:


• Distributed decision making


• by leader: Leader election


• Commit protocols


• Distributed locks:


• Deadlock detection 


• Deadlock avoidance


• Distributed checkpoints



Distributed Transactions
• Distributed commit


• All members of a group need to perform an action or 
none


• One phase commit:


• Single coordinator


• Sends a “commit” or a “not-commit” message


• Has no feedback from participants


• Cannot be used in practice



Distributed Transactions
• Two phase commit (Jim Gray)


• Phase 1: 


• Coordinator sends vote request


• Participants vote on whether they want to commit


• Phase 2:


• Coordinator decides vote


• Single no is a veto


• Coordinator sends participants message



Distributed Transactions



Distributed Transactions



Distributed Transactions
• 2PC can have problems with failures


• Failure of coordinator or participants leads to blocking



Distributed Transactions
INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Participant in INIT waiting for request to vote


• Can locally abort transaction

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Coordinator in WAIT waiting for answers


• Can send Global_Abort

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Participant in READY waiting for coordinator


• Cannot decide


• Block until coordinator recovers


• Or talk to other participant


• If all participants are in state READY, no decision can 
be taken

INIT

WAIT

ABORT COMMIT

vote request

vote abort vote commit

INIT

READY

ABORT COMMIT

vote request
vote commit

Global abort 
ACK

Global commit
ACK

vote request
vote abort

Coordinator Participant



Distributed Transactions
• Participant in READY waiting for coordinator


• Cannot decide


• Block until coordinator recovers


• Or talk to other participant


• If all participants are in state READY, no decision can 
be taken



Distributed Transactions
• Non-blocking solution


• Use multicast primitive


• Receiver immediately multicasts received message 
to all participants



Distributed Transactions
• Three Phase Commit


• Crashed coordinator might leave participants hanging 
Solution is to add another phase


•



Distributed Time Order
• TO rule: 


• If pi(x) and qj(x) are operations in conflict then


• Use Lamport clock to generate time stamps


• Both transactions have local timestamp 1 but are 
ordered so that 2nd transaction aborts

pi(x) is executed before qj(x) () ts(ti) < ts(tj)

Server 1 : r1(x) w2(x) . . .

Server 2 : r2(y) w1(y) . . .



Distributed Transactions
• Locking protocols


• Need to reach global decision when to release a lock


• Primary 2PL:


• All locking is done at a primary site


• Distributed 2PL


• Strict 2PL with commit releases locks



Distributed Transactions
• Optimistic protocols


• Protect validation / write phase by using 2PC or 3PC



Distributed Transactions
• Distributed deadlock handling


• Detection


• Time-outs


• Edge chasing


• Blocked transaction sends out a probe to all transactions it is waiting for


• Those forward probe


• When probe returns to sending transaction:


• Deadlock exist


• Path(s) of returned probe(s) indicates which transaction to abort


• Path pushing


• Collect local “waits-for” graphs at a single server



Ticket-Based Concurrency
• Used in federated databases


• Need to “force" conflicts between competing local 
transactions.


• Example: Database D1={a,b}, D2={c,d}


• Global transactions t1=r(a)r(c), t2=r(b)r(d)


• Local transactions t3=w(a)w(b), t4=t(c)t(d)


• is incorrect

s1 = r1(a)c1w3(a)w3(b)c3r2(b)c2

s2 = w4(c)r1(c)c1r2(d)c2w4(d)c4

s1 ⇡ t1t3t2, s2 ⇡ t2t4t1



Ticket-Based Concurrency
• Each local database maintains a ticket


• Accessed only by global transactions


• Operations are: 


• Read ticket


• Take-a-ticket:


• Read ticket, write back incremented ticket value


• Each transaction takes a ticket at a local database


• Can commit only if ticket values have the same relative 
order at all participating sites



Ticket-Based Concurrency
• Optimistic ticket method


• Transaction manager maintains a ticket graph


• Before commit, make sure that ticket graph has no 
cycles

ti ! tj ()
transaction i reads a ticket value smaller than transaction j



Ticket-Based Concurrency
• Conservative ticket method


• Insures that transactions can only get tickets in the 
same order


