MySQL Marathon

MySQL Marathon

- Build the employees database again from Module 4
- Idea: Practice your SQL

• Open the sql script downloaded from the website

• Find out who is the employee with ID 201771

• Ms. Fumitaka Gammage:

```
SELECT
    first_name, last_name, gender
FROM
    employees
WHERE
    emp no = 201771;
```

• Find out all data from the departments table

SELECT * FROM departments;

'd009','Customer Service' 'd005','Development' 'd002','Finance' 'd003','Human Resources' 'd001','Marketing' 'd004','Production' 'd006','Quality Management' 'd008','Research' 'd007','Sales'

• Find all employee's last name whose first name is 'Elvis'

SELECT
 first_name, last_name
FROM
 employees
WHERE
 first_name = 'Elvis';

returns 246 rows

- Find the name of all employees with a salary of more than \$100,000 currently
 - Currently: to_date in salaries is 9999-01-01

• Two solutions, first without join, then with join

```
SELECT
    first_name, last_name, salary, from_date, to_date
FROM
    employees,
    salaries
WHERE
    employees.emp_no = salaries.emp_no
        AND salaries.salary > 100000
        AND salaries.to date = '9999-01-01';
```

- We do not need to preface the attributes with the table name if they are unambiguous
- Notice how we pile on conditions
- Since we are accessing two tables, we can also use a join

SELECT

first_name, last_name, salary, from_date, to_date
FROM

employees

JOIN

salaries ON employees.emp_no = salaries.emp_no
WHERE

salaries.salary > 100000
AND salaries.to date = '9999-01-01';

 Use the in-clause to find all employees with first name Denis or Elvis

```
SELECT
   first_name, last_name, gender
FROM
   employees
WHERE
   first_name in ('Denis', 'Elvis');
```

- Find how many employees were hired in 1998
 - Remember that LIKE allows similarity queries
 - Wild cards:
 - % any sequence of characters
 - _ (underscore) a single character
 - * (asterisk) anything
 - Remember count

SELECT
 COUNT(*)
FROM
 employees
WHERE
 hire_date LIKE ('1998%');

 Use 'BETWEEN' — 'AND' to find the first, last name, salary, and timeframe of the salalry of all employees that made at one point between 40,000 and 50,000 dollars in salary

SELECT

first_name, last_name, salary, from_date, to_date
FROM

employees, salaries

WHERE

```
employees.emp_no = salaries.emp_no
AND salary BETWEEN 40000 AND 50000;
```

SELECT

first_name, last_name, salary, from_date, to_date
FROM

employees

JOIN

salaries ON employees.emp_no = salaries.emp_no
WHERE

```
employees.emp_no = salaries.emp_no
```

 Use BETWEEN — AND to find all employees with first name that were hired between March 1 1988 and June 1 1988 and whose first name is 'Gunilla'

```
SELECT
   first_name, last_name, hire_date
FROM
   employees
WHERE
   hire_date BETWEEN '1986-3-1' AND '1986-6-1'
   AND first_name = 'Gunilla';
```

- What is the average life-time salary of people hired in 1985 compared to people hired in 1989
 - Hint: you need to calculate two averages. First the average for a single employees

```
SELECT AVG(Averages.indAvg)
FROM (
SELECT
    AVG(salary) AS indAvg
FROM
    employees,
    salaries
WHERE
    salaries.emp_no = employees.emp_no
        AND employees.hire_date BETWEEN '1989-1-1' AND '1990-1-1'
GROUP BY employees.emp no) as Averages;
```


- Here we have an inner table that we need to give its own alias.
 - You notice that you forget it because the workbench gives you an error.

- WHERE versus HAVING
 - Example:
 - Extract all first names from the employees table that appear more than three times, but only for employees hired after January 1 1999.
 - The second condition is the selection of records, so that is a WHERE clause
 - The first condition (count) is a condition after the grouping, so it is a HAVING clause

SELECT
 first_name, COUNT(first_name)
FROM
 employees
WHERE
 hire_date > '1999-01-01'
GROUP BY first_name
HAVING COUNT(first_name) > 3
ORDER BY COUNT(first_name) DESC;

- Problem:
 - Select the number of employees who have had more than one contract after 2000
 - Use the dept_emp

```
SELECT
    first_name, last_name
FROM
    dept_emp,
    employees
WHERE
    dept_emp.emp_no = employees.emp_no
    AND employees.hire_date > '2000-01-01'
GROUP BY employees.emp_no
HAVING COUNT(dept_emp.from_date) > 1;
```

Update Statements

- Remember commits and rollbacks
- Go to the SQL workbench and disable automatic commit
 - Click on the right button to enable the commit and rollback buttons

Update Statements

- Change the record with employee number 99901 to your data
- Before and after, check the values, then rollback and check the values for employee number 99901 again

```
UPDATE
    employees
SET
   first name = 'Thomas',
    last name = 'Schwarz',
    birth date = '2000-12-15'
WHERE
    emp_no = 99901;
SELECT
 *
FROM
    employees
WHERE
    emp no = 99901;
```

Update Statements

• Change the to_date to April 1, 2020 for all open-ended contracts (ending at 9999-01-01).

UPDATE salaries SET to_date = '2020-04-01' WHERE to date = '9999-01-01';

Update Statements

 Insert into departments a new department with dept_no d010 and dept_name 'Business Analytics'

INSERT INTO departments
VALUES ('d010', 'Business Analytics');

Update Statements

 Change the name of the 'Business Analytics' department into 'Data Analysis'

```
UPDATE
   departments
SET
   dept_name = 'Data Analysis'
WHERE
   dept_name = 'Business Analytics';
```

SELECT * FROM departments;

Aggregate Statements

• How many departments are there now in departments?

SELECT COUNT(*) FROM departments;

Aggregate Statements

- Find the average salary of contracts after January 1, 1985
 - Round to the nearest cent

SELECT
 ROUND(AVG(salary),2)
FROM
 salaries
WHERE
 from date > '1985-01-01';

JOIN Statements

 Find the first name, last name, gender, and department name together with their tenure of all department managers using a JOIN statement

SELECT

first_name, last_name, gender, dept_name, from_date, to_date
FROM

employees

JOIN

(dept_manager JOIN departments ON dept_manager.dept_no =
departments.dept_no)

ON dept_manager.emp_no = employees.emp_no;

JOIN Statements

- Join the employees and the department manager table in order to find out whether any one with last name 'Markovitch'
- Order the results first by deptartment number, then by the employee number

SELECT

e.first_name, e.last_name, m.dept_no, m.from_date
FROM

employees e

JOIN

dept_manager m ON e.emp_no = m.emp_no
WHERE

e.last_name = 'Markovitch'
ORDER BY m.dept_no DESC , e.emp_no;

JOIN Statements

- Remember that we introduced another department
 - It has no manager, so it is not represented in the manager table.
 - Create a table that shows all manager emp_no and their departments, but including the new department

```
SELECT
*
FROM
    departments d
    LEFT JOIN
    dept_manager m ON d.dept_no = m.dept_no
ORDER BY d.dept_no;
```

JOIN Statements

 Select the first name, last name, the hire date, and the job title of all employees whose first name is 'Margareta' and whose last name is 'Markovitch'

SELECT

e.first_name, e.last_name, t.title, t.from_date, t.to_date
FROM

employees e JOIN titles t ON e.emp_no = t.emp_no
WHERE

e.first_name = 'Margareta' and e.last_name = 'Markovitch';