
Indices
Thomas Schwarz, SJ

Indices
• For a DBMS administrator:

• Important to make common queries fast

• E.g.: Lookup by name can be a frequent occurrence

• To speed up these queries, we use indices

• "Indexes" in SQL, which treats it as an English word

• Index is a data structure that implements a generalized
dictionary or key-value store

• Given a key, find all records with that value

• Unlike a dictionary / key-value store: keys can have multiple
values

Indices
• Indices come at a cost

• Need to be maintained at all updates, insertions,
deletes

Indices
• Why can indices make a difference?

• Usually, tables are stored in pages of SSD or blocks of
HDD

• Fetching a page to look up it costs time

• SSD response time: ~10 sec

• HDD response time: ~ 5 msec

• An index can minimize the amount of data that needs to
be fetched

μ

MySQL Example
• To see how indices work, we can use the EXPLAIN

statement in MySQL

• We use the employees database

• We look at a simple SELECT WHERE query

• We create an index

• We look at the same simple SELECT WHERE query

MySQL Example

EXPLAIN SELECT *
FROM employees
WHERE last_name = 'Rosis';

MySQL Example
• Create an Index on last_name

CREATE INDEX iLastName ON employees(last_name);

Example MySQL
EXPLAIN SELECT *
FROM employees
WHERE last_name = 'Rosis';

Before

After

Example MySQL
• Without the index, the query looked at all the rows

• With the index, the query located just a few hundred rows

• We can use the SHOW INDICES FROM tablename to
display all indices

Example MySQL
• There are three indices in my version

• One created because emp_no is a primary key

• One called iName, and the one we just created:
iLastName

Indices
• Some indices are created automatically

• DBMS needs them to enforce constraints

• Primary key

• Foreign key

MySQL Example
• Example: dept_emp in employees has a primary key and

a foreign key restraint.

• Both result in an index

• Primary key is two attributes

• Foreign key is one attribute

Indices
• Indices where standardized in SQL-99

• Even though most commercial database products had them

• Typical syntax

• CREATE INDEX indexname ON tablename(listofcolumns)

• If you specify more than one column:

• Only speeds up searches that specify values for all of
these columns

• E.g.: In the MySQL example, the index on first and
last name did not speed up a query for last name only

Indices
• During the table creation, you can just specify the indices

you want

• You can also drop an index

DROP INDEX iName;

CREATE TABLE t(
 c1 INT PRIMARY KEY,
 c2 INT NOT NULL,
 c3 INT NOT NULL,
 c4 VARCHAR(10),
 INDEX (c2,c3)
);

Indices
• Effectiveness of indices

• Cost of indices: More work for updates, inserts, deletes

• Benefits of indices: Can reduce the number of pages fetched

• Looking at one record in a page takes almost as long as
looking at all records in a page

• Effect depends on:

• What is your storage type

• Hint: You can spend money on Intel Optane storage
to speed it up

• How clustered the records are that are indexed

Indices
• Records with indexed value can be scattered

over storage

• Use of the index only reduces number of
pages by half

Indices
• Relevant records are clustered

• Need only retrieve a few pages

Indices
• Clustering depends on the intrinsic design of a database

management system

• However, if we only look for few records with a given
value, then indexing is bound to be effective

Indices
• Example:

•

• Assume we have a frequent query

•

• Should we build an index on starName?

starsIn(movieTitle, movieYear, starName)

SELECT movieTitle, movieYear
FROM starsIn
WHERE starName = s;

Indices
• Example (cont):

• Each year, there are about 750 movies to put into a
database

• Assume we have a database starting at 1950

• That would give us about 50,000 movies

• But there were more movies earlier

• So let's say 100,000 movies in the database

Indices
• Example (cont):

• On average, we might have three or four stars per
movie in our starsIn database

• Table should have 400,000 entries

• Each entry has about 50 B (big assumption)

• So, total size of table is 2,000,000 B = 2 MB

• Blocks have size 4KB, so about 500 blocks

Indices
• Example (cont):

• John Wayne has about 150 movies with credits

• Carrie Fisher has about 30 movies with credits

• Average is probably closer to the lower range: 30 movies per
star on average

• Without index: Need to fetch 500 pages

• With index in the worst case:

• Need to fetch 30 pages

• Index fetches ~20 times less pages, so let's go for it if the query
is frequent

Indices
• Example:

• What about the opposite query

•

• Even better, about four entries per title / year

• Fetch about four blocks out of 500

• Index speeds up fetching by a factor of 100

• Close to actual wall-clock timing update

SELECT starName
FROM starsIN
WHERE movieTitle = 'Rio Hondo'
 and movieYear = 1959;

Indices
• Example:

• However, if these queries are extremely rare, then the
gain is not realized

• Cost of maintaining indices depends on the number of
entries:

• In our case, about 750 movies are entered into the
database

• About 3000 updates per year

• That is not a lot

Indices
• Example:

• Transactions at an e-auction house

• Any bid, any offer entered into a database

• Updates almost as frequents as queries

• Need to be very careful about the costs of indexing

Materialized Views
• Views are virtual

• Created whenever they are accessed

• But views can be heavily used

• Views are used to:

• Easier query logic because the definition of the view
encompasses the difficulties

• E.g. a view that uses a join of many tables

• Security: Restrict access to tables, but give access to
views

• Enforce business rules: What is "active", what is "popular"

Materialized Views
• Virtual views that are heavily used means

• running a query against a view

• running a query to recreate the view

• Materialized views store the view in a derived table

• Not all DBMS support materialized views

• Some give it a different name

• Typical command:
CREATE MATERIALIZED VIEW movieProd AS
 SELECT title, year, name
 FROM movies, movieExec
 WHERE procuderC# = cert#

Materialized Views
• Materialized views need to be maintained

• Some updates / inserts / deletes to movieExec and
movies need to be intercepted

• The changes to the materialized view are incremental

Materialized Views in
MySQL

• They do not exists as materialized views

• But we can work around it:

• Materialized views are tables that are modified by
modifications to the base tables

• Can use triggers to intercept modifications of the base
tables in order to update the materialized view

