Views and Indices

Thomas Schwarz, SJ

Virtual Views

e Relations can be real
e CREATE TABLE ...
e or virtual

* CREATE VIEW

Do not exist physically
 Defined through a query like expression

e Can be queried as if they are real tables

Virtual Views

e SQL Programming Language:
e Table: Relation that exists
e View: Relation that is virtual

e Temporary: Created while a query is executed and
afterwards discarded

Virtual Views

e Views are defined via CREATE VIEW

CREATE VIEW MGMMovies AS
SELECT title, year
FROM Movies
WHERE studioName = 'MGM';

Virtual Views

movies (title, year, length, genre, studioName, producerC#)
movieExec (name, address, cert#, netWorth)

CREATE VIEW MovieProd AS
SELECT title, name
FROM movies, movlieExec
WHERE producerC# = cert#;

Virtual Views

* Interacting with Views

* A view, once defined, can be queried just like a real
table

SELECT title
FROM MGMMovies
WHERE vyear = 1979;

Virtual Views

starName (t1tle, year, name)

SELECT DISTINCT starName
FROM MGMMovies, starsIn
WHERE title = movieTitle AND year = movieYear

Virtual Views

e \WWe can rename the attributes in a VIEW

CREATE VIEW movieProd (movieTitle, prodName) AS
SELECT title, name
FROM movies, movliekExec
WHERE producerC# = cert#;

e attribute names in the view are now movieTitle and
prodName

Exercises

movieStar (name, address, gender, birthday)
movieExec (name, address, cert#, netWorth)

studio (name, address, presC#)

e A view RichExec with name address, certificate number,
and net-worth of all executives with more than 10 million
net-worth

Exercises

movieStar (name, address, gender, birthday)
movieExec (name, address, cert#, netWorth)

studio (name, address, presC#)

e A view RichExec with name, address, certificate number,
and net-worth of all executives with more than 10 million
net-worth

CREATE VIEW RichExec (execName, execAddress, cert#,
netWorth) AS
SELECT name, address, cert#, netWorth
WHERE netWorth > 10000000;

Exercises

movieStar (name, address, gender, birthday)
movieExec (name, address, cert#, netWorth)

studio (name, address, presC#)

e A view StudioPres with name, address, netWorth of studio
presidents

Exercises

movieStar (name, address, gender, birthday)
movieExec (name, address, cert#, netWorth)

studio (name, address, presC#)

e A view StudioPres with name, address, netWorth of studio
presidents

CREATE VIEW StudioPres AS
SELECT name, address, netWorth
FROM movieExec
WHERE cert# IN (
SELECT presC#
FROM studio);

Exercises

movieStar (name, address, gender, birthday)
movieExec (name, address, cert#, netWorth)

studio (name, address, presC#)

e A view ExecutiveStar giving the name, address, gender,
birth date and certificate number of movie stars that are
also movie executives

e Assume that executives with the same name and
address as a movie star are the movie star

 Even though there is no reason to assume this

Exercises

movieStar (name, address, gender, birthday)
movieExec (name, address, cert#, netWorth)

studio (name, address, presC#)

* A view ExecutiveStar giving the name, address, gender, birth date
and certificate number of executives that are also movie executives

CREATE VIEW ExecutiveStar AS
SELECT ms.name, ms.address, ms.gender,
ms.birthdate, me.cert#
FROM movieStar ms, movieExec me
WHERE ms.name = ms.name AND ms.address = me.address

Modifying Views

e Some views can be used to update the underlying tables
 View Removal
e DROP VIEW MGMMovies

e Just like Table removal

¢ DROP TABLE movies

e which would also make the view MGMMovies unusable

Modifying Views

e Updatable views

e SQL has clear, but complicated definitions when a view
can be updated (and an underlying table changed)

* View must be defined by SELECT

 There is only one relation R in the definition

* No subquery involving R in the WHERE clause

* Enough attributes of R are involved in the view

Modifying Views

e MGMMovies fulfills the requirements

e |f we insert via the view:

INSERT INTO MGMMovies
VALUES ('Get Shorty', 1995)

* movies will get a new tuple

e title: 'Get Shorty', year: 1995

e Everything else: Null

* |nterestingly, because of the latter, the view itself would
nhot be updated

movies (title, year, length, genre, studioName, producerC#)

Modifying Views

e The view Insertion

INSERT INTO MGMMovies
VALUES ('Get Shorty', 1995)

* has the same effect as inserting into the underlying table

INSERT INTO movies
VALUES ('Get Shorty', 1995)

Modifying Views

 Jo address this anomaly, need to add to the view

CREATE OR REPLACE VIEW MGMMovies (name, title, studio) AS
SELECT name, title, studioName
FROM movies
WHERE studio = 'MGM';

Modifying Views

e Now It works

INSERT INTO MGMMovies
VALUES ('Find Shorty', 1995, 'MGM')

 which is equivalent to

INSERT INTO movies (name, year, studioName)
VALUES ('Find Shorty', 1995, 'MGM')

e and assumes that we do not have any triggers or
constraints against NULL values for the other
attributes

 but now the view also changes

Modifying Views

* Deletions are also passed through the underlying table

o DELETE FROM MGMMovies
WHERE title LIKE '%Shorty%';
e gets translated into

DELETE FROM movies
WHERE title LIKE '$Shortys' AND studioName = 'MGM';

Modifying Views

UPDATE MGMMovies
SET year = 1968
WHERE title = 'Get Shorty';

e becomes

UPDATE movies

SET yvear = 1968

WHERE title = 'Get Shorty' AND
studioName = 'MGM';

Modifying Views

* |ncluding all properties in a view is a kludge
e (Can use a trigger instead

e Use the INSTEAD OF syntax

CREATE TRIGGER mgmInserts

INSTEAD OF INSERT ON mgmInserts
REFERENCING NEW ROW as newRow

FOR EACH ROW

INSERT INTO movies (title, year, studioName)
VALUES (newRow.title, newRow.year, 'MGM');

Modifying Views in MySQL

e MySQL only started to support views in Version 5 (2008)
e Supports updatable views

 But not the INSTEAD trigger

Try It Out

 Use the employees database in MySQL

* You might want to turn of automatic commits, then do
a commit and at the end of the session a rollback

e Task 1: Convince yourself that there are no emp_no
larger than 500000

Try It Out

USE employees;

SELECT *
FROM dept emp
WHERE emp no >=500000;

Try It Out

e Jask 2: Insert three persons into the employees table

with employee numbers 600000, 600001, 600002. You
can invent the missing dates.

* The hire date should be the day of today
e In MySQL that is CURDATE()

Try It Out

INSERT INTO employees (emp no, birth date, first name,
last name, gender, hire date)
VALUES

(600000, '1980-01-01'", 'Hector', 'Garcila Molinas',
'M', CURDATE()),

(600001, '1981-01-01', 'Ursula', 'Leyendorft', 'F',
CURDATE ()),

(600002, '1982-01-01', 'Bob', 'Karragher', 'M',
CURDATE ()) ;

Try It Out

 Create a view of dept_emp that only contains entries with
to_date unlimited

e j.e.'9999-01-01" which is used to indicate an open
contract.

e Call the view v_current_dept_emp

* |nclude all attributes so that we can update

Try It Out

CREATE OR REPLACE VIEW v current dept emp AS
SELECT emp no, dept no, from date, to date
FROM dept emp
WHERE to date = '9999-01-01";

Try It Out

* Now insert the three new employees into the view
 from_date is today

e Department is 'd004"

Try It Out

INSERT INTO v current dept emp(emp no, dept no, from date,

to date)

VALUES
(600000, 'd004', CURDATE (), '9999-01-01"),

(600001, 'd0o04', CURDATE (), '9999-01-01"),
(600002, 'd004', CURDATE (), '9999-01-01");

Try It Out

e Check that these updates made it to the dept_emp table
as well as the view

Try It Out

SELECT =
FROM v current dept emp
WHERE emp no >=500000;

SELECT *
FROM dept emp
WHERE emp no >=500000;

Try It Out

e Change the view v_current_dept_emp to have only three
columns: emp_no, dept_no, from_date by recreating it

Try It Out

CREATE OR REPLACE VIEW v current dept emp AS
SELECT emp no, dept no, from date
FROM dept emp
WHERE to date = '9999-01-01";

e The CREATE OR REPLACE clause makes it easy.

* You could also say DROP VIEW and then do a CREATE
VIEW

Try It Out

e Check the table dept_emp for its definition

Try It Out

e In MySQLWorkbench:
e (Click on the table and the info tab

e0e
: 7 Local instance 3306
| o SEE&EL o2
Administration Schemas
SCHEMAS
Q
v || employees
v 7 Tables

> departments

v [#] Columns
¢ emp_no
¢ dept_no
‘ ¢ from_date
¢ to_date
» 77 Indexes
» 7 Foreign Keys

e Toimmava

v £ dept_emp il

A A W W W Ww w w w w w whN

Try It Out

In the view, select DDL, which gives you the definition of

the table

Grant|

(“dept_no’) ON DELETE CASCADE

[NON) MySQL Workbench
H Local instance 3306
2 = =
& SEE&EL o
Administration Schemas ¥ Query1 4 employees.v_current_dept_emp # employees.dept_emp
NS . . .
SCHEMAS) Info Columns Indexes Triggers Foreign keys Partitions
Q
v -] employees DDL for employees.dept_emp
[Tabl
\ ables 1 CREATE TABLE ‘dept_emp® (
>l departments) e 2 ‘emp_no’ int NOT NULL,
vE _em| 3 ‘dept_no’ char(4) NOT NULL,
w4 Columns 4 ‘from_date' date NOT NULL,
& emp_no 5 ‘to_date' date NOT NULL DEFAULT ,
+ dept_no 6 PRIMARY KEY (‘emp_no', dept_no'),
7 KEY “dept_no’ (‘dept_no‘),
¢ from_date . X \ N . . S X
8 CONSTRAINT “dept_emp_ibfk_1" FOREIGN KEY ('emp_no') REFERENCES ‘“employees"' (emp_no') ON DELETE CASCADE,
¢ to_date 9 CONSTRAINT “dept_emp_ibfk_2' FOREIGN KEY (‘dept_no') REFERENCES ‘departments
» 71 Indexes 10) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

» 3 Foreign Keys
&1 Triggers
» | dept_manager
» =] employees
» =] salaries
» = titles
v 751 Views

» [Z] v_current_dept_emp
[Stored Procedures
5] Functions

» | sys

¥

Try It Out

e Alternatively, you can select columns

Foreign keys

Partitions Grants DDL

Nullable Character Set Collation

NO
NO
NO

utf8mb4

¥ Query1 #- employees.v_current_dept_emp H employees.dept_emp
Info JReLINLERS Indexes Triggers
Column Type Default Value
emp_no int
dept_no char(4)
from_date date
to_date date 0001-01-01

NO

utf8mb4_090...

Privileges

select,insert,update,references
select,insert,update,references
select,insert,update,references
select,insert,update,references

e Both methods show that we have a NOT NULL

constraint on to_date

Ex

Try It Out

o Alter the table dept_emp to have a default value of
'9999-01-01" in the to_date.

e \We could also remove the NOT NULL restriction

Try It Out

ALTER TABLE dept emp
MODIFY COLUMN to date date NOT NULL DEFAUIT '1-01-01";

Try It Out

* |f we try to add directly to the table with new values, we
violate a foreign key constraint.

INSERT INTO v current dept emp(emp no, dept no, from date)
VALUES
(600003, 'd004', CURDATE()),
(600004, 'd004', CURDATEC()),
(600005, 'd004', CURDATEC());

Try It Out

 Create a few more employees in the employee table

e With emp_no larger than 600000

Try It Out

INSERT INTO employees (emp no, birth date, first name,
last name, gender, hire date)
VALUES

(600003, '1980-01-01', 'Javier', 'GPena', 'M',
CURDATE ()),

(600004, '1981-01-01', 'Dick', '"Murphy', 'M',
CURDATE ()),

(600005, '1982-01-01', '"Emilio', 'Zapato', 'M',
CURDATE ()) ;

Try It Out

INSERT INTO employees (emp no, birth date, first name,
last name, gender, hire date)
VALUES

(600003, '1980-01-01', 'Javier', 'Pena', 'M',
CURDATE ()),

(600004, '1981-01-01', 'Dick', 'Murphy', 'M',
CURDATE ()),

(600005, '1982-01-01', 'Emilio', 'Zapato', 'M',
CURDATE ()) ;

Try It Out

 Check that this updates the dept_emp table correctly

Try It Out

e MySQL trigger mechanisms are not so great!

