
Views and Indices
Thomas Schwarz, SJ

Virtual Views
• Relations can be real

• CREATE TABLE …

• or virtual

• CREATE VIEW

• Do not exist physically

• Defined through a query like expression

• Can be queried as if they are real tables

Virtual Views
• SQL Programming Language:

• Table: Relation that exists

• View: Relation that is virtual

• Temporary: Created while a query is executed and
afterwards discarded

Virtual Views
• Views are defined via CREATE VIEW

CREATE VIEW MGMMovies AS
 SELECT title, year
 FROM Movies
 WHERE studioName = 'MGM';

Virtual Views

CREATE VIEW MovieProd AS
 SELECT title, name
 FROM movies, movieExec
 WHERE producerC# = cert#;

movies(title, year, length, genre, studioName, producerC#)
movieExec(name, address, cert#, netWorth)

Virtual Views
• Interacting with Views

• A view, once defined, can be queried just like a real
table

SELECT title
FROM MGMMovies
WHERE year = 1979;

Virtual Views

SELECT DISTINCT starName
FROM MGMMovies, starsIn
WHERE title = movieTitle AND year = movieYear

starName(title, year, name)

Virtual Views
• We can rename the attributes in a VIEW

• attribute names in the view are now movieTitle and
prodName

CREATE VIEW movieProd(movieTitle, prodName) AS
 SELECT title, name
 FROM movies, movieExec
 WHERE producerC# = cert#;

Exercises

• A view RichExec with name address, certificate number,
and net-worth of all executives with more than 10 million
net-worth

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

Exercises

• A view RichExec with name, address, certificate number,
and net-worth of all executives with more than 10 million
net-worth

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

CREATE VIEW RichExec(execName, execAddress, cert#,
netWorth) AS
 SELECT name, address, cert#, netWorth
 WHERE netWorth > 10000000;

Exercises

• A view StudioPres with name, address, netWorth of studio
presidents

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

Exercises

• A view StudioPres with name, address, netWorth of studio
presidents

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

CREATE VIEW StudioPres AS
 SELECT name, address, netWorth
 FROM movieExec
 WHERE cert# IN (
 SELECT presC#
 FROM studio);

Exercises

• A view ExecutiveStar giving the name, address, gender,
birth date and certificate number of movie stars that are
also movie executives

• Assume that executives with the same name and
address as a movie star are the movie star

• Even though there is no reason to assume this

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

Exercises

• A view ExecutiveStar giving the name, address, gender, birth date
and certificate number of executives that are also movie executives

movieStar(name, address, gender, birthday)
movieExec(name, address, cert#, netWorth)
studio(name, address, presC#)

CREATE VIEW ExecutiveStar AS
 SELECT ms.name, ms.address, ms.gender,
 ms.birthdate, me.cert#
 FROM movieStar ms, movieExec me
 WHERE ms.name = ms.name AND ms.address = me.address

Modifying Views
• Some views can be used to update the underlying tables

• View Removal

•

• Just like Table removal

•

• which would also make the view MGMMovies unusable

DROP VIEW MGMMovies

DROP TABLE movies

Modifying Views
• Updatable views

• SQL has clear, but complicated definitions when a view
can be updated (and an underlying table changed)

• View must be defined by SELECT

• There is only one relation R in the definition

• No subquery involving R in the WHERE clause

• Enough attributes of R are involved in the view

Modifying Views
• MGMMovies fulfills the requirements

• If we insert via the view:

•

• movies will get a new tuple

• title: 'Get Shorty', year: 1995

• Everything else: Null

• Interestingly, because of the latter, the view itself would
not be updated

INSERT INTO MGMMovies
VALUES('Get Shorty', 1995)

movies(title, year, length, genre, studioName, producerC#)

Modifying Views
• The view insertion

• has the same effect as inserting into the underlying table

INSERT INTO MGMMovies
VALUES('Get Shorty', 1995)

INSERT INTO movies
VALUES('Get Shorty', 1995)

Modifying Views
• To address this anomaly, need to add to the view

CREATE OR REPLACE VIEW MGMMovies(name, title, studio) AS
 SELECT name, title, studioName
 FROM movies
 WHERE studio = 'MGM';

Modifying Views
• Now it works

• which is equivalent to

• and assumes that we do not have any triggers or
constraints against NULL values for the other
attributes

• but now the view also changes

INSERT INTO MGMMovies
VALUES('Find Shorty', 1995, 'MGM')

INSERT INTO movies(name, year, studioName)
VALUES ('Find Shorty', 1995, 'MGM')

Modifying Views
• Deletions are also passed through the underlying table

•

• gets translated into

DELETE FROM MGMMovies
WHERE title LIKE '%Shorty%';

DELETE FROM movies
WHERE title LIKE '%Shorty%' AND studioName = 'MGM';

Modifying Views

• becomes

UPDATE MGMMovies
SET year = 1968
WHERE title = 'Get Shorty';

UPDATE movies
SET year = 1968
WHERE title = 'Get Shorty' AND
 studioName = 'MGM';

Modifying Views
• Including all properties in a view is a kludge

• Can use a trigger instead

• Use the INSTEAD OF syntax

CREATE TRIGGER mgmInserts
INSTEAD OF INSERT ON mgmInserts
REFERENCING NEW ROW as newRow
FOR EACH ROW
INSERT INTO movies(title, year, studioName)
VALUES(newRow.title, newRow.year, 'MGM');

Modifying Views in MySQL
• MySQL only started to support views in Version 5 (2008)

• Supports updatable views

• But not the INSTEAD trigger

Try It Out
• Use the employees database in MySQL

• You might want to turn of automatic commits, then do
a commit and at the end of the session a rollback

• Task 1: Convince yourself that there are no emp_no
larger than 500000

Try It Out

USE employees;

SELECT *
FROM dept_emp
WHERE emp_no >=500000;

Try It Out
• Task 2: Insert three persons into the employees table

with employee numbers 600000, 600001, 600002. You
can invent the missing dates.

• The hire date should be the day of today

• In MySQL that is CURDATE()

Try It Out
INSERT INTO employees(emp_no, birth_date, first_name,
last_name, gender, hire_date)
VALUES
 (600000, '1980-01-01', 'Hector', 'Garcia Molinas',
'M', CURDATE()),
 (600001, '1981-01-01', 'Ursula', 'Leyendorf', 'F',
CURDATE()),
 (600002, '1982-01-01', 'Bob', 'Karragher', 'M',
CURDATE());

Try It Out
• Create a view of dept_emp that only contains entries with

to_date unlimited

• i.e. '9999-01-01' which is used to indicate an open
contract.

• Call the view v_current_dept_emp

• Include all attributes so that we can update

Try It Out

CREATE OR REPLACE VIEW v_current_dept_emp AS
 SELECT emp_no, dept_no, from_date, to_date
 FROM dept_emp
 WHERE to_date = '9999-01-01';

Try It Out
• Now insert the three new employees into the view

• from_date is today

• Department is 'd004'

Try It Out
INSERT INTO v_current_dept_emp(emp_no, dept_no, from_date,
to_date)
VALUES
 (600000, 'd004', CURDATE(), '9999-01-01'),
 (600001, 'd004', CURDATE(), '9999-01-01'),
 (600002, 'd004', CURDATE(), '9999-01-01');

Try It Out
• Check that these updates made it to the dept_emp table

as well as the view

Try It Out
SELECT *
FROM v_current_dept_emp
WHERE emp_no >=500000;

SELECT *
FROM dept_emp
WHERE emp_no >=500000;

Try It Out
• Change the view v_current_dept_emp to have only three

columns: emp_no, dept_no, from_date by recreating it

Try It Out
CREATE OR REPLACE VIEW v_current_dept_emp AS
 SELECT emp_no, dept_no, from_date
 FROM dept_emp
 WHERE to_date = '9999-01-01';

• The CREATE OR REPLACE clause makes it easy.

• You could also say DROP VIEW and then do a CREATE
VIEW

Try It Out
• Check the table dept_emp for its definition

Try It Out
• In MySQLWorkbench:

• Click on the table and the info tab

Try It Out
• In the view, select DDL, which gives you the definition of

the table

Try It Out
• Alternatively, you can select columns

• Both methods show that we have a NOT NULL
constraint on to_date

Try It Out
• Alter the table dept_emp to have a default value of

'9999-01-01' in the to_date.

• We could also remove the NOT NULL restriction

Try It Out

ALTER TABLE dept_emp
MODIFY COLUMN to_date date NOT NULL DEFAUlT '1-01-01';

Try It Out
• If we try to add directly to the table with new values, we

violate a foreign key constraint.

INSERT INTO v_current_dept_emp(emp_no, dept_no, from_date)
VALUES
 (600003, 'd004', CURDATE()),
 (600004, 'd004', CURDATE()),
 (600005, 'd004', CURDATE());

Try It Out
• Create a few more employees in the employee table

• With emp_no larger than 600000

Try It Out
INSERT INTO employees(emp_no, birth_date, first_name,
last_name, gender, hire_date)
VALUES
 (600003, '1980-01-01', 'Javier', 'GPena', 'M',
CURDATE()),
 (600004, '1981-01-01', 'Dick', 'Murphy', 'M',
CURDATE()),
 (600005, '1982-01-01', 'Emilio', 'Zapato', 'M',
CURDATE());

Try It Out
INSERT INTO employees(emp_no, birth_date, first_name,
last_name, gender, hire_date)
VALUES
 (600003, '1980-01-01', 'Javier', 'Pena', 'M',
CURDATE()),
 (600004, '1981-01-01', 'Dick', 'Murphy', 'M',
CURDATE()),
 (600005, '1982-01-01', 'Emilio', 'Zapato', 'M',
CURDATE());

Try It Out
• Check that this updates the dept_emp table correctly

Try It Out
• MySQL trigger mechanisms are not so great!

