
Database System
Interactions

Thomas Schwarz, SJ

Three Tier Web Server
Architecture

• Standard architecture for e-commerce sites

• Tiered / layered architecture around since the THE
operating system 1965

Presentation Layer: Web Services

Application Layer: Business Logic

Data Layer: DBMS

html5, Javascript

Java, .Net, C#, Python, C++

MySQL, PostgresSQL, SQL Server, MongoDB

Three Tier Web Server
Architecture

• Web Services Layer:

• User interact with the site using a web browser

• Forms, scripts, …

• Requests are being routed to the application layer

• Simple example: Embed PHP scripts into a web
server

• Download: LAMP / WAMP / XAMPP etc. With Apache, MySQL, PHP, Perl, …

• Embed PHP script in HTML: <?php … ?>

Three Tier Web Server
Architecture

• Application Tier

• Simple system: Bypass application tier by directly
translating web requests to database requests

• Normally:

• Integrate different databases

• Implement business logic

Three Tier Web Server
Architecture

• Database Tier:

• Executes queries (including updates and inserts)

Integrating SQL with
Application Layer

• Application layer uses languages like PHP, Python, Java,
…

• Needs to interact with an application programming
environment

SQL Environment
• SQL environment

• Schemas: Tables, views, assertions, triggers, stored
procedures, character sets, grant statements (for rights)
maintained by a catalog

• Servers / Clients

• Clients need to connect to a server

• Client/server connection is divided into Sessions

• Each session selects a catalog and a schema

Integrating SQL with
Application Layer

• Impedance mismatch problem

• All languages / environment are Turing complete

• Standard SQL is not:

• Not everything that a computer can do can be done
with SQL

• E.g. cannot compute factorial with SQL

• Need to use both SQL (to interact with database) AND
application level program

Integrating SQL with
Application Layer

• Program sets up a connection to a database and closes it
at the end

• which might be automatic

Integrating SQL with
Application Layer

• Central idea is the 'cursor'

• Basically a pointer into the result table of an SQL query

• Usually:

• Can get result table row by row

• Can get result table all at once

• Could be hard on memory resources

• Can get result table in tranches

Integrating Python with
MySQL

• Solutions differ widely according to application tier
environment and

• Here: look at how to connect Python with MySQL

• There are a variety of Python packages that will do that

• I chose SQL-connector

Python 3 SQL connector
• Needed: Python 3

• Install MySQL Connector

• Install with pip

• Be careful for which Python you install

• E.g. Mac has a Python 2.7 installed as part of the OS

• You will need to know your MySQL password

• If necessary, just re-install MySQL

Python 3 MySQL Connector
• You can use

• https://www.mysqltutorial.org/python-mysql/

Python 3 MySQL Connector
• Write a Python 3 program that

• Task 1:

• finds all employees with a given last name

• Task 2:

• inserts an employee with a given first and last name and emp_no
600000.

• Task 3:

• changes the hiredate of the employee with emp_no 600000 to today

• Task 4:

• deletes the employee with emp_no 600000

Homework
• Write a Python program that connects to your databate

and

• Insert an employee "John Adams" into the database
working as a Senior Engineer and earning 200000 as of
today in the Research department

• Find all information on all employees called "John
Adams"

• Delete the newly inserted record from the database

• (If you are not familiar with Python, you can use any other
language that has a connector)

