SQL

Repetition

Creating Schemas
Inserting
Selection

Constraints

Data Definition
Language

SQL DDL

e Create a database with CREATE DATABASE

CREATE DATABASE IF NOT EXISTS USNavy;

SQL DDL

e Three type of tables in SQL
o Stored Relations, called tables
e \iews: relations calculated by computation

e Jemporary tables: created during query execution

SQL DDL

* Data Types
* Character strings of fixed or varying length
* CHAR(Nn) - fixed length string of up to n characters
* VARCHAR(n) - fixed length string of up to n characters

* Uses and endmarker or string-length for storage
efficiency

e Bit strings
e BIT(n) strings of length exactly n
 BIT VARYING(n) - strings of length up to n

SQL DDL

e Data Types:
 Boolean: BOOLEAN: TRUE, FALSE, UNKNOWN
e Integers: INT = INTEGER, SHORTINT
e Floats: FLOAT = REAL, DOUBLE, DECIMAL(n,m)
e Dates: DATE
e SQL Standard: ‘1948-05-14")
e Times: TIME
e SQL Standard: 19:20:02.4

SQL DDL

e Data Types:

e MySQL: ENUM('M', 'F")

SQL DDL

e CREATE TABLE creates a table

CREATE TABLE Movies (

title CHAR (100),
year INT,
length INT,
genre CHAR(10),

studioName CHAR (30),
producerC# INT

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30),
address VARCHAR (255),
gender CHAR (1),

birthday DATE

SQL DDL

e Drop Table drops a table

DROP TABLE Movies;

SQL DDL

e Altering a table with ALTER TABLE

e with ADD followed by attribute name and data type
o with DROP followed by attribute name

ALTER TABLE MovieStar ADD phone CHAR(16);

ALTER TABLE MovieStar DROP Birthday;

SQL DDL

e Default Values

e Conventions for unknown data
e Usually, NULL

¢ (Can use other values for unknown data

CREATE TABLE MovieStar (

name CHAR (30),
address VARCHAR (255),
gender CHAR (1) DEFAULT '?',

birthday DATE DEFAULT '0000-00-00'
) ;

SQL DDL

e Declaring Keys
1. Declare one attribute to be a key
2. Add one additional declaration:
e Particular set of attributes is a key
e Can use
1. PRIMARY KEY
2. UNIQUE

SQL DDL

UNIQUE for a set S:

e Two tuples cannot agree on all attributes of S unless
one of them is NULL

e Any attempted update that violates this will be
rejected

PRIMARY KEY for a set S:
o Attributes in S cannot be NULL

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
gender CHAR (1),

birthday DATE

SQL DDL

CREATE TABLE MovieStar (

name CHAR (30),

address VARCHAR (255),

gender CHAR (1) DEFAULT '?',
birthday DATE DEFAULT '0000-00-00",

PRIMARY KEY (name)

SQL DDL

CREATE TABLE Movies (

title CHAR(100),
year INT,
length INT,
genre CHAR(10),

studioName CHAR (30),
producerC# INT,
PRIMARY KEY (title, vear)

Simple Diagrams

e A schema is represented by a networked diagram
e Nodes represent tables
e Name of the table labels the node
e Interior of the node are the name of the attributes
e Underline the primary key

e Optionally, add domain to each attribute

Simple Diagrams

Sales

purchase_number : int
date_of_purchase : date
customer_id: int
item_code: varchar(10)

ltems

item code :
item :
unit_price:

company_id:

Customers

customer_id: int

first_name : varchar(255)

last_name : varchar(255)

email_address : varchar(10)

number of complaints : int

Companies

int company_id : int
varchar(255) company_name : varchar(63)
decimal(10,2) headquarters_ph_nr: char(25)
int

Constraints in MySQL

e Constraints in MySQL have names
e Often automatically generated

e Use the SHOW CREATE TABLE query

Table, "Create Table"

customers, "CREATE TABLE "customers (
‘customer_id‘ int NOT NULL AUTO INCREMENT,
"first name varchar (255) DEFAULT NULL,
"last name varchar (255) DEFAULT NULL,
"emall address varchar(255) DEFAULT NULL,
‘number of complaints int DEFAULT (0),
PRIMARY KEY (customer id’),
UNIQUE KEY "email address (email address’)

) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4 0900 ai ci"

Constraints in MySQL

e Missing values are usually a NULL
e Can automatically assign INT with AUTO_INCREMENT

e Used widely to assign artificial primary keys

Constraints in MySQL

e NOT NULL constraint

e When inserting a tuple with NULL value in the
constrained column, error will be thrown

CREATE TABLE tasks (

1d AUTO INCREMENT PRIMARY KEY,
title (255) NOT NULL,

start date NOT NULIL,

end date

) ;

e Considered good practice to include in all columns
where a NULL value is not expected

Constraints in MySQL

e ALTER TABLE allows to introduce new / remove old
constraint

e Need to check that the inserted values comply

ALTER TABLE tasks
CHANGE
end date
end date DATE NOT NULL;

ALTER TABLE tasks
MODIEFY
end date
end date DATE NOT NULL;

Constraints in MySQL

* UNIQUE
* Values in a single attribute are different
* Value groups in a group of attributes are different
* Creating a constraint:
 Specify in CREATE TABLE for a single attribute
e Add a CONSTRAINT cstr_name UNIQUE(attr1, attr2, ...)

e Can leave out constraint name, will be replaced by an
automatically created name

e Use ALTER TABLE ADD CONSTRAINT

Constraints in MySQL

 UNIQUE

CREATE TABLE suppliers (
supplier id INT AUTO INCREMENT,
name VARCHAR (255) NOT NULL,
phone VARCHAR(15) NOT NULL UNIQUE,
address VARCHAR (255) NOT NULL,
PRIMARY KEY (supplier id),

CONSTRAINT uc name address UNIQUE (name , address)

Constraints in MySQL

e UNIQUE constraint creates an index

e |ndex Is a data structure with quick look-up

e Access indices through the SHOW INDEX FROM table
command

Result Grid | Filter Rows: Q Export: |:| .

Table Non_unique Key_name Seq_in_index Column_name Collation Cardinality Sub_part Packed Null Index_type Comment In... Visible Expres: Résydlt
ri

customers 0 PRIMARY 1 customer_id A 1 [HULL | [HULL | BTREE YES [HULL |

customers 0 email_address 1 email_address A 1 [HULL | [HULL | YES BTREE YES [HULL |

Result 3 Result 4 Result 5 © Read Only

Foreign Keys

e Relationships between tables are sometimes constructed
with shared values

e Sales has an attribute client id
e Customers has a primary key client_id
e Need not be named the same

e But it is usually convenient to do so

Constraints in My

Sales

purchase number :
date_of_purchase :
customer_id:
item_code:

Customers
H- customer id : int
first_name : varchar(255)
last_name : varchar(255)
email_address : varchar(10)
int number of complaints : int
date
int (FK) >0————
varchar(10) (FK) P°—
ltems
Companies
H item_code : int g) :
item : varchar(255) 7| company_id : Int
unit_price: decimal(10,2) company_name : varchar(63)
company_id: int (FK) >0—— headquarters_ph_nr: char(25)

Constraints in MySQL

e Example:
e A customer can have many sales
e But each sale has only one customer

* Relationship customers sales is a one-to-many
relationship

e customers is the referenced (or parent) table

e sales is the referencing (or child) table

e As is typical, the referenced attribute is a primary key in
the referenced table

Constraints in My

Sales

purchase number :
date_of_purchase :
customer_id:
item_code:

Customers
H- customer id : int
first_name : varchar(255)
last_name : varchar(255)
email_address : varchar(10)
int number of complaints : int
date
int (FK) >0————
varchar(10) (FK) P°—
ltems
Companies
H item_code : int g) :
item : varchar(255) 7| company_id : Int
unit_price: decimal(10,2) company_name : varchar(63)
company_id: int (FK) >0—— headquarters_ph_nr: char(25)

Constraints in MySQL

e |n a diagram:
e crow-feet with ball indicate many

e double bar indicates one

Constraints in MySQL

e Foreign key constraint

e Once established, insures that action is taken upon
insertion or deletion of a record affecting the other table

Constraints in MySQL

e Possible Actions:

e CASCADE: if atuple from the referenced table is
deleted or updated, the corresponding tuple in the
referencing table is also deleted / updated

o SET NULL: If a row from the referenced table is deleted
or updated, the values of the foreign key in the
referencing table are set to NULL

Constraints in MySQL

e Possible Actions:

e RESTRICT: if a row from the referenced table has a
matching row in the referencing table, then deletion
and updates are rejected

e SET DEFAULT: Accepted by MySQL parser but action
not performed

Constraints in MySQL

e Foreign keys constraint actions
e Are for

e ON UPDATE

e ON DELETE

Constraints in MySQL

e Creating foreign key constraints:
CREATE TABLE categories (

categoryId INT AUTO INCREMENT PRIMARY KEY,
categoryName VARCHAR (100) NOT NULL
) ;

CREATE TABLE products (

productId INT AUTO INCREMENT PRIMARY KEY,
productName varchar (100) not null,
categoryId INT,
CONSTRAINT fk category
FOREIGN KEY (categoryId)

REFERENCES categories (categoryId)

ON UPDATE CASCADE

ON DELETE CASCADE

Constraints in MySQL

e You can drop a foreign key restraint using the ALTER
TABLE statement

ALTER TABLE table name
DROP FOREIGN KEY constralnt name;

Constraints in MySQL

e When loading a database from (e.g.) .csv files

e (Can carefully create referenced tables before
referencing tables

e Temporarily disable foreign key checks

SET foreign key checks = 0;

SET foreign key checks = 1;

Select

Select

o SELECT * FROM table
o SELECT coll, col2 FROM table
e SELECT * FROM table WHERE conditions

SELECT

= equals (comparison operator)
AND, OR

IN, NOT IN

LIKE, NOT LIKE

BETWEEN ... AND

EXISTS, NOT EXISTS

IS NULL, IS NOT NULL

comparison operators

Comparisons with NULL

e NULL in any expression gives NULL

e |f you compare anything with NULL in MySQL, you get
NULL

e |F you order, NULL values appear last

e In other SQL dialects: UNKNOWN

SELECT

e LIKE
e Pattern matching
e Wild cards
e % means zero or more characters
e _means a single letter
e [] means any single character within the bracket
e N means any character not in the bracket

e - means a range of characters

SELECT

e BETWEEN ... AND ...

e Selects records with a value in the range

e endpoints included

SELECT
*
FROM
employees
WHERE
hire data between 1990-01-01 and 1999-12-31;

SELECT

e SELECT DISTINC

SELECT DISTINCT
gender
FROM
employees

Like Examples

WHERE name LIKE 't%'

e any values that start with 't’
WHERE name LIKE '%t'

e any values that end with 't'
WHERE name LIKE '%t%'

e any value witha't' in it
WHERE name LIKE '_t%'

e any value with a 't' in second position

SELECT

e LIMIT gives the maximum number of rows returned

e Can be used for a sample

e (Can be used with ORDER BY ASC

Insert Operations

Insert Syntax
e No need to insert into automatic values

) .
If only a few attributes are set, R

table (attrl,
Values (vl, v2

e |f all attributes are set, just list the values

e Can set many tuples at once

INSERT INTO served
VALUES

(

(
(
(

'William Howe', 'Great Britain', '1746-1-1', '1778-4-1"),
'Benedict Arnold', 'Great Britain', '1757-1-1', '1775-1-1"),
'Benedict Arnold', 'United States', '1775-1-1', '1780-9-1"),
'Benedict Arnold', 'Great Britain', '1780-9-1', '1787-1-1")

attr?2,
;o)

)

Queries with more than one
table

e SQL has explicit commands for the various joins and
products

e Normally, combine tables by listing them in the FROM
clause

SELECT name
FROM movies, moviesExec
WHERE title = ‘Star Wars’

AND movies.producerC# = moviesExec.cert#

Queries with more than one
table

e Find all movie execs that live with a star

¢ MovieStar (name, address, gender, birthdate)
MovieExec (name, address, cert#, netWorth)

SELECT MovieStar.name, MovieExec.name)
FROM MovieStar, MovieExec
WHERE

MovieStar.address = MovieExec.address

Queries with more than one
table

 Tuple Variables

e Sometimes need to combine two tuples in the same
table

e (Can extend the FROM clause

SELECT Starl.name, StarZ.name
FROM MovieStars Starl, MovieStars Star?
WHERE

Starl.address = Star?Z2.address

AND Starl.name < Star?Z2.name

Queries with more than one
table

e Unions, intersections, excepts

e To execute the corresponding set operations

(SELECT name, address
FROM movieStars

WHERE gender = 'F'

)

INTERSECT

(SELECT name, address
FROM movieExecs

WHERE netWorth > 1000000

)

Updates

Changes existing records
Syntax:

UPDATE tablename
SET attrl=vall, attrZ2=val’?, ..
WHERE conditions;

Does not need to change all attributes

If there is no WHERE condition, all records are updated

Commit and Rollback

e A database allows us to rollback to a previous state
unless we have committed

e MySQLWorkbench has an auto-commit button

@ MySQL Workb
) Local instance 3306
= - =
& SEE&EL =
Administration Schemas # revolutionaryWar
SR w N % & B, % Limitto 50000rows B 1% <2 @ (1) (¥
Q

14 e

e Rollback puts database into the state of the last
commit

Delete

e Just like an update

DELETE FROM tablename
WHERE condition

e The Where clause is not necessary

Delete, Drop, Truncate

* Drop Table:
e Definite action: cannot recover with rollback
 Truncate:
e All records removed
e Auto-increment values reset
* Table description stays
e Delete:
e Delete removes records row by row
 Auto-increment values remain

e Slower than truncate

Subqueries

e Subqueries are helper queries

Subqueries

e Subqgueries producing a scalar value

e Example: Producer of Star Wars

SELECT name
From movies, movieExec

WHERE title = 'Star Wars'
AND
producerC# = cert#;

e Can achieve the same effect by first looking for the
producerC#

Subqueries

e Example: Producer of Star Wars

SELECT name
FROM movieExec
WHERE cert# =
(SELECT producerC#
FROM movies
WHERE title = 'star wars'

)

e This might be implemented with the same query
execution as before

Subqueries

e Subqueries with conditions involving relations

 We obtain a relation R as a subquery

e E.g. with subquery (SELECT * FROM foobar)
e Queries are:

e EXISTS R

* SINR sNOTINR

e s>ALLR NOT s>ALLR
e s>ANYR NOTs>ANYR

Subqueries

e Subqueries involving tuples
e Tuple is a list of scalar values

e Can compare tuples with the same number of
components

e Example:

e Finding the producers of 'Harrison Ford' movies

Subqueries

SELECT name
FROM movieExec
WHERE cert# IN
(SELECT producerC#
FROM movies
WHERE (title, year) IN
(SELECT movieTitle, movlieYear
FROM Starsln
WHERE starName = 'Harrison Ford'

)
) ;

Subqueries

e Jo analyze a query, start with the inmost query

SELECT name
FROM movieExec
WHERE cert# IN
(SELECT producerC#
FROM movies
WHERE (title, vyear) IN
(SELECT movieTitle, movieYear
FROM Starslin
WHERE starName = 'Harrison Ford'

)
) ;

Subqueries

e This query can also be written without nested subqueries

SELECT name

FROM moviekExec, movies, starsIn

WHERE cert# = producerC#
AND starsIn.title = movies.title
AND starsIn.year = movlie.year
AND starName = 'Harrison Ford'

Subqueries

e Correlated subqgueries

e Subquery is evaluated many times

e Once for each value given

e Example

SELECT title
FROM movies 0Ol1d
WHERE vyvear < ANY (
SELECT vyear
FROM movies
WHERE title = 0Old.title

) ;

Subqueries

e Scoping rules
e First look for the subquery and tables in that subquery

e Then go to the nesting subqguery

e etc.

Subqueries

e Subqueries in FROM clauses

e Here we join on a subquery aliased Prod

SELECT name
FROM movieExecs, (SELECT producerC#
FROM movies, starsIn
WHERE movies.title = starsIn.title

AND movies.year = starsln.year
AND starName = 'Harrison Ford'
) Prod

WHERE cert# = Prod.producerC#

Subqueries

e SQL JOIN expression
e EXxplicit construction of various joins
e CROSS JOIN (product)
e NATURAL JOIN
e FULL OUTER JOIN
e NATURAL FULL OUTER JOIN
e LEFT OUTER JOIN
e RIGHT OUTER JOIN

Subqueries

e Examples

movies FULL OUTER JOIN starsIn ON
movies.title = stars.

Subqueries

e Examples

movilieStar (name, address, gender, birthday)

movieExec (name, address, cert#, netWorth)

movieStar NATURAL JOIN movieExec (
name, address, gender, birthday, cert#, netWorth)

Eliminating Duplicates

e Use Distinct

SELECT DISTINCT name
FROM movies

e Warning: Invoking distinct is costly

Eliminating Duplicates

e Union, intersection, difference usually remove duplicates
automatically

e |f we do not want this, but bag semantics:

e Use the keyword all

(SELECT title, vyear

FROM movies)

UNION ALL

(SELECT movieTitle AS title,

movieYear AS year
FFROM
starsin);

Aggregate Functions

e COUNT

e numeric and non-numeric data

 null values excepted

e SUM, MIN, MAX, AVG - only numeric data

e EXxercise: Find the number of different stars in the starsin
table

SELECT COUNT (DISTINCT name)
FROM starsln

Aggregate Functions

e Find the combined net-worth of moviekExecs

SELECT SUM (networth)
FROM movieExecs

e Find the average net-worth of movieExecs

SELECT ROUND (AVG (networth), 2)
FROM movieExecs

Aggregate Functions

e Dealing if NULL values
e |[FNULL(EXPR1, EXPR2):
e (Gives EXPR1 if it is not NULL and EXPR2 if not

® SELECT
name,
IFNULL (studio, 'not president') AS studio
FROM movieExecs;

Aggregate Functions

e COALESCE(EXPR1, EXPR2, EXPRS, ... EXPRn)

e Gives first nonNULL expression

Grouping

e Aggregation happens usually with grouping
e To group, use GROUP BY followed by a WHERE clause

SELECT studioName, SUM(length) AS totalRunTime
FROM movies
GROUP BY studioName;

Grouping

e Example

e Computing the total run time of movies produced by a
producer

SELECT name, SUM(length) AS totalRunTime
FROM MovieExec, Movilies

WHERE producerC# = cert#

GROUP BY name;

Grouping

e Aggregation and Nulls

e NULL does not contribute to a sum, average, or count

e Grouping and Nulls

e NULL is an ordinary value for grouping purposes

e Aggregation except COUNT over an empty bag gives
result NULL

Transactions

Transactions

e Databases have to process many operations in parallel

e This means some support for inter-process
communication

e Usually provided by logging
e DBMS differ in what they provide
e Serializability:

e All transactions appear to have been executed one
after the other

Transactions

e Atomicity
e A single query is never interrupted:
e Example:

e A transfer of money from one account to another
IS executed completely or not at all

e Both accounts have changed or none

Transactions

e [ransaction

e A group of SQL statements that are all processed in the
order given or not at all

e SQL:
« START TRANSACTION
e either
e COMMIT
e ROLLBACK

Transactions

e Read only transactions

e By declaring a transaction as read-only, SQL can
usually perform it quicker

e SET TRANSACTION READ ONLY;
e SET TRANSACTION READ WRITE;

Transactions

* Dirty Reads:

 Reading a record from an update that will be rolled-back
* Are dirty reads bad?

* Depends

e Sometimes, it does not matter, and we do not want the
DBMS spend time on making sure that there are no
dirty reads

e Sometimes, a dirty read can absolutely mess up things

* Selling the same commodity to two customers, ...

Transactions

e SQL Isolation Levels:
e Allow dirty reads:
e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ UNCOMMITTED

Transactions

e SQL Isolation Levels:
e Allow reads only of committed data:
e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ COMMITTED

Transactions

e SQL Isolation Levels:

e Disallow dirty reads, but insure that the reads are
consistent:

e SET TRANSACTION READ WRITE
e SET ISOLATION LEVEL READ REPEATABLE READ

Transactions

e SQL Isolation Levels:
e Serializability (default):
e SET TRANSACTION READ WRITE

e SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE

