
Constraints and
Triggers
Databases 2020

Keys and Foreign Keys
• SQL Primary Key declaration

• Equivalent to NOT NULL and UNIQUE

• Creates an index, so lookup with key are faster

• SQL Foreign Key declaration

• Insures that a value in a foreign table exists

• That value must be declared UNIQUE

Keys and Foreign Keys

• Two declarations in SQL

CREATE TABLE studio(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

);

CREATE TABLE studio(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT,
FOREIGN KEY (presC#) REFERENCES MovieExec(cert#)

);

Keys and Foreign Keys

• What happens if we try to insert into studio a president or
change a presC# whose certificate number does not
match a certificate number in movieExecs?

• What happens if we delete a row from movieExecs or
update a cert# in movieExecs

• (1) Reject modification.

• (2) Cascade operation

• (3) Set NULL

Keys and Foreign Keys
CREATE TABLE studio (
 name CHAR(30) PRIMARY KEY,

address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

ON DELETE SET NULL
ON UPDATE CASCADE

);

• If we delete a movieExec tuple with a studio president,
then the presC# value in studio is replaced by NULL

• If we change a movieExec tuple with a studio president,
then the presC# value gets changed as well

Keys and Foreign Keys

• A tuple with foreign key is "dangling" if the foreign key
does not exist

• Similarly, a tuple that does not participate in a join is
called dangling.

Keys and Foreign Keys
• A table with a foreign key needs to be populated first

• But there are examples of circular references

• To deal with them:

• Make the two insertions part of a single transaction

• Tells the DBMS to not check constraints until the transaction is
finished

• Can declare deferrable

• INITIALLY DEFERRED — check just before a transaction
commits

• INITIALLY IMMEDIATE — check after each statement is
executed

Keys and Foreign Keys

CREATE TABLE studio (
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 presC# INT UNIQUE
 REFERENCES MovieExec(cert#)
 DEFERRABLE INITIALLY DEFERRED
);

Keys and Foreign Keys

• Can also give constraints names

• Then change is enforcement policy

SET CONSTRAINT myConstraint DEFERRED;

SET CONSTRAINT myConstraint IMMEDIATE;

Constraints on Attributes

• NOT NULL

Constraints on Attributes

• CHECK

• Enforces conditions on an attribute

CREATE TABLE movieExec (
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 presC# INT REFERENCES MovieExec(cert#)
 CHECK(presC# >= 100000
);

Constraints on Attributes

CREATE TABLE movieStar(
 name VARCHAR(255) PRIMARY KEY;
 address VARCHAR(255);
 gender CHAR(1)
 CHECK(gender IN ('F', 'M', 'X'))
);

Constraints on Attributes

• Checks cannot be used to replace foreign keys

• The check is only executed by the time the tuple is
inserted or changed

• If movieExec changes, our table is NOT updated

• Also, NULL values would be rejected

…
presC# INT CHECK
 (presC# IN (SELECT cert# FROM movieExec)
…

Constraints on Tuples
• Tuple based checks are executed on Insertion and on

Update

• Checks do not trigger checks for relations mentioned in
checks

CREATE TABLE movieStar(
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(255),
 gender CHAR(1),
 birthdate DATE,
 CHECK(gender = 'F' OR name NOT LIKE 'Ms.%')
);

Constraints on Tuples
• Attribute based checks are executed when

• Attribute is changed

• Tuple inserted

• Tuple based checks are executed when

• Tuple changes

• Tuple inserted

Constraint Modifications
• You should give your constraints names

• Helps with error messages

• Used for changing constraints
name CHAR(30) CONSTRAINT nameIsKey PRIMARY KEY

CONSTRAINT rightTitle
 CHECK(gender = 'F' OR name not like 'Ms.%'

Constraint Modifications
• Dropping constraints

• Use ALTER table
ALTER TABLE movieStar DROP CONSTRAINT nameIsKey;

ALTER TABLE movieStar ADD CONSTRAINT
 nameIsKey PRIMARY KEY(name)

Assertions
• Assertion:

• A boolean valued SQL expression that must be true at
all times

• Trigger:

• Series of actions associated with certain events and
triggered by them

Assertion
• Creating assertions

• Should be true when you call it, unless the assertion is
deferred

CREATE ASSERTION <name> CHECK (<condition>)

Assertion
• Formulating assertions

• Unlike checks, assertions need to specify the relation

movieExec(name, address, cert#, netWorth)
studio(name, address, presC#

CREATE ASSOCIATION richPres CHECK(
 (NOT EXISTS
 (SELECT studio.name
 FROM studio, movieExec
 WHERE presC# = cert# AND netWorth<1000000
)
);

Assertion
• Formulating assertions

• All studios can only produce <10000 minutes of movies

Assertion

CREATE ASSERTION sumLength CHECK
 (10000 >= ALL
 (SELECT SUM(length)
 FROM movies

 GROUP BY studioName
)
);

Assertion
• Assertions are always checked when there is a change in

the database

• Constraints for a tuple are only checked when a tuple is
updated or inserted

• Therefore, making the previous assertion a check has a
different meaning:

ALTER TABLE movies ADD CONSTRAINT
 maxLength CHECK (10000 >= ALL
 (SELECT SUM(length) FROM movies
 GROUP BY studioName)
);

Assertion
• Dropping assertions

DROP ASSERTION sumLength

Triggers
• A Trigger is awakened at certain events

• insert, delete, updates to a particular relation

• A Trigger then tests a condition.

• If condition is false, nothing more happens

• Otherwise: The action associated with trigger is
executed

Triggers
• Trigger's condition and action executed either :

• state of DB before the triggering event

• state of DB after the triggering event

• Condition and action can refer to both the new and the old
values

• Update events can be limited to certain attribute(s)

• Trigger can execute

• once for each modified tuple — row-level trigger

• once for all tuples changed — statement level trigger

Triggers
• Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
 OLD ROW AS OldTuple,
 NEW ROW AS NewTuple

FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
 UPDATE movieExec
 SET netWorth = OldTuple.netWorth
 WHERE cert# = NewTuple.cert#

Triggers

Triggers

Triggers

Triggers

Triggers

