Constraints and
Triggers

Databases 2020



Keys and Foreign Keys

e SQL Primary Key declaration
e Equivalent to NOT NULL and UNIQUE
e Creates an index, so lookup with key are faster

e SQL Foreign Key declaration
e |nsures that a value in a foreign table exists

e That value must be declared UNIQUE



Keys and Foreign Keys

e Two declarations in SQL

CREATE TABLE studio(
name CHAR(30) PRIMARY KEY,
address VARCHAR (255),
presC# INT REFERENCES MovieExec (cert#)

) ;

CREATE TABLE studio(
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
presC# INT,
FOREIGN KEY (presC#) REFERENCES MovieExec (cert#)

) ;



Keys and Foreign Keys

e What happens if we try to insert into studio a president or
change a presC# whose certificate number does not
match a certificate number in movieExecs?

e What happens if we delete a row from movieExecs or
update a cert# in moviekExecs

e (1) Reject modification.
e (2) Cascade operation

e (3) Set NULL



Keys and Foreign Keys

CREATE TABLE studio (
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
presC# INT REFERENCES MovieExec (cert#)
ON DELETE SET NULL
ON UPDATE CASCADE

) ;

* |f we delete a movieExec tuple with a studio president,
then the presC# value in studio is replaced by NULL

* |f we change a movieExec tuple with a studio president,
then the presC# value gets changed as well



Keys and Foreign Keys

e A tuple with foreign key is "dangling” if the foreign key
does not exist

e Similarly, a tuple that does not participate in a join is
called dangling.



Keys and Foreign Keys

* A table with a foreign key needs to be populated first
e But there are examples of circular references

e Jo deal with them:

e Make the two insertions part of a single transaction

e Tells the DBMS to not check constraints until the transaction is
finished

e (Can declare deferrable

* INITIALLY DEFERRED — check just before a transaction
commits

e [INITIALLY IMMEDIATE — check after each statement is
executed



Keys and Foreign Keys

CREATE TABLE studio (
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
presC# INT UNIQUE
REFERENCES MovieExec (cert#)
DEFERRABLE INITIALLY DEFERRED



Keys and Foreign Keys

e (Can also give constraints names

e Then change is enforcement policy

SET CONSTRAINT myConstraint DEFERRED;

SET CONSTRAINT myConstraint IMMEDIATE;



Constraints on Attributes

e NOT NULL




Constraints on Attributes

e CHECK

e Enforces conditions on an attribute

CREATE TABLE movieExec (
name CHAR(30) PRIMARY KEY,
address VARCHAR (25b5),
presC# INT REFERENCES MovieExec (cert#)
CHECK (presC# >= 100000



Constraints on Attributes

CREATE TABLE movieStar (
name VARCHAR (255) PRIMARY KEY;
address VARCHAR (Z255);
gender CHAR (1)
CHECK (gender IN ('F', 'M', 'X'"))



Constraints on Attributes

e Checks cannot be used to replace foreign keys

presC# INT CHECK
(presC# IN (SELECT cert# FROM movieExec)

e The check is only executed by the time the tuple is
inserted or changed

e |f movieExec changes, our table is NOT updated

e Also, NULL values would be rejected



Constraints on Tuples

e Tuple based checks are executed on Insertion and on
Update

e Checks do not trigger checks for relations mentioned in
checks

CREATE TABLE movieStar (
name CHAR (30) PRIMARY KEY,
address VARCHAR (255),
gender CHAR (1),
birthdate DATE,
CHECK (gender = 'F' OR name NOT LIKE 'Ms.%')



Constraints on Tuples

e Attribute based checks are executed when
e Attribute is changed
e Juple inserted

e Tuple based checks are executed when
e Juple changes

e Tuple inserted



Constraint Modifications

e You should give your constraints names
e Helps with error messages

e Used for changing constraints

name CHAR (30) CONSTRAINT namelsKey PRIMARY KEY

CONSTRAINT rightTitle
CHECK (gender = 'F' OR name not like 'Ms.%'



Constraint Modifications

e Dropping constraints

e Use ALTER table
ALTER TABLE movieStar DROP CONSTRAINT nameIsKey;

ALTER TABLE movieStar ADD CONSTRAINT
namelIsKey PRIMARY KEY (name)



Assertions

e Assertion:

e A boolean valued SQL expression that must be true at
all times

e Trigger:

e Series of actions associated with certain events and
triggered by them



Assertion

e Creating assertions

CREATE ASSERTION <name> CHECK (<condition>)

e Should be true when you call it, unless the assertion is
deferred



Assertion

e Formulating assertions

e Unlike checks, assertions need to specify the relation

movieExec (name, address, cert#, netWorth)
studio (name, address, presC#

CREATE ASSOCIATION richPres CHECK (
(NOT EXISTS
(SELECT studio.name
FROM studio, movieExec
WHERE presC# = cert# AND netWorth<1000000

)
) ;




Assertion

e Formulating assertions

e All studios can only produce <10000 minutes of movies



Assertion

CREATE ASSERTION sumLength CHECK
(10000 >= ALL
(SELECT SUM(length)
FROM movies
GROUP BY studioName

)



Assertion

e Assertions are always checked when there is a change in
the database

e Constraints for a tuple are only checked when a tuple is
updated or inserted

e Therefore, making the previous assertion a check has a
different meaning:

ALTER TABLE movies ADD CONSTRAINT
maxLength CHECK (10000 >= ALL
(SELECT SUM(length) FROM movies
GROUP BRY studioName)
) ;



Assertion

e Dropping assertions

DROP ASSERTION sumLength



Triggers

e A Trigger is awakened at certain events

e nsert, delete, updates to a particular relation
e A Trigger then tests a condition.

e |f condition is false, nothing more happens

e Otherwise: The action associated with trigger is
executed



Triggers

Trigger's condition and action executed either :
e state of DB before the triggering event
e state of DB after the triggering event

Condition and action can refer to both the new and the old
values

Update events can be limited to certain attribute(s)
Trigger can execute
* once for each modified tuple — row-level trigger

* once for all tuples changed — statement level trigger



Triggers

e Example:

CREATE TRIGGER netWorthTrigger
AFTER UPDATE OF netWorth ON movieExec
REFERENCING
OLD ROW AS OldTuple,
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth)
UPDATE movieExec
SET netWorth = OldTuple.netWorth
WHERE cert# = NewTuple.cert#



Triggers



Triggers



Triggers



Triggers



Triggers



