
Distributed Systems
Overview
Thomas Schwarz, SJ

Origins
• 1980:

• Computers are big and expensive

• No communication between computers

• 1980s:

• System on a chip: cheap, small computers

• High-speed computer networks

• 2010 onward:

• Multi-core systems

• 2020 onward:

• Ubiquitous computing, high interconnection between systems

What does “Distributed”
mean?

• Distributed vs. decentralized system

• Two views on realizing distributed systems

• Integrative view: connecting existing networked
computer systems into a larger system.

• Expansive view: an existing networked computer
systems is extended with additional computers

Centralized System Decentralized System Distributed System

What does “Distributed”
mean?

• Two definitions

• A decentralized system is a networked computer
system in which processes and resources are
necessarily spread across multiple computers.

• A distributed system is a networked computer system
in which processes and resources are sufficiently
spread across multiple computers

What does “Distributed”
mean?

• Examples of decentralized systems:

• Federated Learning

• Machine learning with data from several companies

• Company data is not revealed to other companies

• By necessity decentralized

What does “Distributed”
mean?

• Examples of decentralized systems:

• Blockchain - Distributed Ledger

• Participants do not trust each other

• but want to collaborate

• Participants validate transactions by others

What does “Distributed”
mean?

• Examples of distributed systems:

• Email service: Log in via the name url, but get directed
to one of many different servers

• Content Delivery Networks e.g. Akamai

• Network Attached Storage: various storage devices
connected by a (often dedicated) network

Common Misconceptions
• Centralized solutions do not scale

• Make distinction between logically and physically
centralized. The root of the Domain Name System:

• logically centralized

• physically (massively) distributed

• decentralized across several organizations

Common Misconceptions
• Centralized solutions have a single point of failure

• Generally not true (e.g., the root of DNS).

• A single point of failure is often:

• easier to manage

• easier to make more robust

Common Misconceptions
• In general:

• There are many, poorly founded, misconceptions
regarding scalability, fault tolerance, security, etc.

• We need to develop skills by which distributed systems
can be readily understood so as to judge such
misconceptions.

Perspectives in Studying
Distributed Systems

• Architecture: common organizations

• Process: what kind of processes, and their relationships

• Communication: facilities for exchanging data

• Coordination: application-independent algorithms

• Naming: how do you identify resources?

• Consistency and replication: performance requires of data,
which need to be the same

• Fault tolerance: keep running in the presence of partial failures

• Security: ensure authorized access to resources

Design Goals
• Overall design goals

• Support sharing of resources

• Distribution transparency

• Openness

• Scalability

Sharing Resources
• Cloud-based shared storage and files

• Peer-to-peer assisted multimedia streaming

• Shared mail services

• e.g. outsourced mail system

• Shared Web hosting

• Content Distribution Networks)

Distribution Transparency
• What is transparency?

• The phenomenon by which a distributed system
attempts to hide the fact that its processes and
resources are physically distributed across multiple
computers, possibly separated by large distances.

• Layer between applications and operating systems: a
middleware layer

Distribution Transparency
Transparency Description

Access Hide differences in data representation and
how an object is accessed

Location Hide where an object is located

Relocation Hide that an object may be moved to another
location

while in useMigration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency Hide that an object may be shared by several
independent users

Failure Hide the failure and recovery of an object

Distribution Transparency
• Transparency is limited by:

• There are communication latencies that cannot be hidden

• Completely hiding failures of networks and nodes is (theoretically
and practically) impossible

• You cannot distinguish a slow computer from a failing one

• You can never be sure that a server actually performed an
operation before a crash

• Full transparency will cost performance, exposing distribution of
the system

• Keeping replicas exactly up-to-date with the master takes time

• Immediately flushing write operations to disk for fault tolerance

Distribution Transparency
• Exposing distribution may be good

• Making use of location-based services (finding your nearby
friends)

• When dealing with users in different time zones

• When it makes it easier for a user to understand what’s going on
(when e.g., a server does not respond for a long time, report it as
failing).

• Conclusion

• Distribution transparency is a nice goal, but achieving it is a
different story, and it should often not even be aimed at.

Openness of distributed
systems

• Open distributed system

• A system that offers components that can easily be used by, or
integrated into other systems. An open distributed system itself will
often consist of components that originate from elsewhere.

• What are we talking about?

• Be able to interact with services from other open systems,
irrespective of the underlying environment:

• Systems should conform to well-defined interfaces

• Systems should easily interoperate

• Systems should support portability of applications

• Systems should be easily extensible

Openness of distributed
systems

• Implementing openness: policies

• What level of consistency do we require for client-cached data

• Which operations do we allow downloaded code to perform?

• Which QoS requirements do we adjust in the face of varying
bandwidth?

• What level of secrecy do we require for communication?

• Implementing openness: mechanisms

• Allow (dynamic) setting of caching policies

• Support different levels of trust for mobile code

• Provide adjustable QoS parameters per data stream

• Offer different encryption algorithms

Separation of Policies and
Mechanisms

• Observation

• The stricter the separation between policy and
mechanism, the more we need to ensure proper
mechanisms, potentially leading to many configuration
parameters and complex management.

• Finding a balance

• Hard-coding policies often simplifies management, and
reduces complexity at the price of less flexibility. There
is no obvious solution.

Dependability
• Basics

• A component provides services to clients.

• To provide services, the component may require the
services from other components

• ⇒ a component may depend on some other component.

• Specifically

• A component C depends on C∗ if the correctness of C’s
behavior depends on the correctness of C∗’s behavior.
(Components are processes or channels.)

Requirements for
Dependability

Requirement Description
Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easy can a failed system be repaired

Reliability vs Dependability
• Reliability R(t) of component C

• Conditional probability that C has been functioning correctly
during [0, t) given C was functioning correctly at the time T
= 0.

• Traditional metrics

• Mean Time To Failure (MTTF): The average time until a
component fails.

• Mean Time To Repair (MTTR): The average time needed to
repair a component.

• Mean Time Between Failures (MTBF): Simply MTTF +
MTTR.

Terminology
Term Description Example
Failure A component is not living up

to its specifications
Crashed program

Error Part of a component that
can lead to a failure

Programming bug

Fault Cause of an error Sloppy programmer

Terminology
Term Description Example
Fault
prevention

Prevent the occurrence of
a fault

Don’t hire sloppy
programmers

Fault tolerance Build a component and
make it mask the
occurrence of a fault

Build each
component by two
independent
programmers

Fault removal Reduce the presence,
number, or seriousness of
a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a
recruiter is doing
when it comes to
hiring sloppy
programmers

Security
• Observation:

• A distributed system that is not secure, is not
dependable

• What we need

• Confidentiality: information is disclosed only to
authorized parties

• Integrity: Ensure that alterations to assets of a system
can be made only in an authorized way

•

Security
• Authorization, Authentication, Trust

• Authentication: verifying the correctness of a claimed
identity

• Authorization: does an identified entity has proper
access rights?

• Trust: one entity can be assured that another will
perform particular actions according to a specific
expectation

Security
• Keeping it simple

• It’s all about encrypting and decrypting data using
security keys.

• Notation:

• K (data) denotes that we use key K to encrypt/
decrypt data.

Security Mechanisms
• Symmetric cryptosystem

• With encryption key EK (data) and decryption key DK
(data):

• if data = DK (EK (data)) then DK = EK . Note:
encryption and descryption key are the same and
should be kept secret.

Security Mechanisms
• Asymmetric cryptosystem

• Distinguish a public key PK (data) and a private (secret)
key SK (data).

• Encrypt message from Alice to Bob:

•

• Sign message from Alice to Bob:

• Alice sends [data,]

• Bob checks that

data = SKBob (PKBob(data)

SKAlice(data)

data = PKAlice (SKAlice(data))

Security Mechanisms
• Secure hashing

• In practice, use hash functions

• is a small byte string

• Any change in the object changes with high probability
.

• If two hashes are different, objects are different

• It two hashes are equal, objects are likely to be the
same

h : Object ↦ h (Object)

h (Object)

h (Object)

Scale
• “scalable” is a buzz-word

• At least three components

• Number of users or processes (size scalability)

• Maximum distance between nodes (geographical
scalability)

• Number of administrative domains (administrative
scalability)

Scale
• Observation

• Most systems account only, to a certain extent, for size
scalability.

• Often a solution: multiple powerful servers operating
independently in parallel.

• Today, the challenge still lies in geographical and
administrative scalability.

Size Scalability
• Root causes for scalability problems with centralized

solutions

• The computational capacity, limited by the CPUs

• The storage capacity, including the transfer rate
between CPUs and disks

• The network between the user and the centralized
service

Geographical Scalability
• Cannot simply go from LAN to WAN: many distributed

systems assume synchronous client-server interactions:
client sends request and waits for an answer. Latency
may easily prohibit this scheme.

• WAN links are often inherently unreliable: simply moving
streaming video from LAN to WAN is bound to fail.

• Lack of multipoint communication, so that a simple
search broadcast cannot be deployed. Solution is to
develop separate naming and directory services (having
their own scalability problems).

Administrative Scalability
• Essence

• Conflicting policies concerning usage (and thus payment),
management, and security

• Examples

• Computational grids: share expensive resources between different
domains.

• Shared equipment: how to control, manage, and use a shared radio
telescope constructed as large-scale shared sensor network?

• Exception: several peer-to-peer networks

• File-sharing systems (based, e.g., on BitTorrent)

• Peer-to-peer telephony (early versions of Skype)

• Peer-assisted audio streaming (Spotify)

• Note: end users collaborate and not administrative entities

Techniques for Scaling
• Hide communication latencies

• Make use of asynchronous communication

• Have separate handler for incoming response

• Problem: not every application fits this model

Techniques for Scaling
• Facilitate solution by moving computations to client

Techniques for Scaling
• Partition data and computations across multiple

machines

• Move computations to clients (Java applets and
scripts)

• Decentralized naming services (DNS)

• Decentralized information systems (WWW)

Techniques for Scaling
• Replication and caching: Make copies of data available at

different machines

• Replicated file servers and databases

• Mirrored Websites

• Web caches (in browsers and proxies)

• File caching (at server and client)

Techniques for Scaling:
Replication

• Applying replication is easy, except for one thing

• Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy
different from the rest.

• Always keeping copies consistent and in a general way
requires global synchronization on each modification.

• Global synchronization precludes large-scale solutions.

• Observation

• If we can tolerate inconsistencies, we may reduce the
need for global synchronization, but tolerating
inconsistencies is application dependent

Parallel Computing
• Observation

• High-performance distributed computing started with
parallel computing

• Multiprocessor and multicore versus multicomputer

Distributed Shared Memory
Systems

• Observation

• Multiprocessors are relatively easy to program in comparison to
multicomputers, yet have problems when increasing the number of
processors (or cores). Solution: Try to implement a shared-memory model
on top of a multicomputer.

• Example through virtual-memory techniques

• Map all main-memory pages (from different processors) into one single
virtual address space. If a process at processor A addresses a page P
located at processor B, the OS at A traps and fetches P from B, just as it
would if P had been located on local disk.

• Problem

• Performance of distributed shared memory could never compete with that
of multiprocessors, and failed to meet the expectations of programmers. It
has been widely abandoned by now.

Cluster Computing
• Essentially a group of high-end systems connected through a LAN

• Homogeneous: same OS, near-identical hardware

• Single, or tightly coupled managing node(s)

Grid Computing
• The next step: plenty of nodes from everywhere

• Heterogeneous

• Dispersed across several organizations

• Can easily span a wide-area network

• Note

• To allow for collaborations, grids generally use virtual
organizations. In essence, this is a grouping of users (or
better: their IDs) that allows for authorization on
resource allocation.

Architecture of Grid
computing

• The layers

• Fabric: Provides interfaces to local
resources (for querying state and
capabilities, locking, etc.)

• Connectivity: Communication/
transaction protocols, e.g., for moving
data between resources. Also various
authentication protocols.

• Resource: Manages a single resource,
such as creating processes or reading
data.

• Collective: Handles access to multiple
resources: discovery, scheduling,
replication.

• Application: Contains actual grid
applications in a single organization.

Integration
• Situation

• Organizations confronted with many networked applications,
but achieving interoperability was painful.

• Basic approach

• A networked application is one that runs on a server making its
services available to remote clients. Simple integration: clients
combine requests for (different) applications; send that off;
collect responses, and present a coherent result to the user.

• Next step

• Allow direct application-to-application communication, leading
to Enterprise Application Integration.

Example: Enterprise
Application Integration (EAI)
• Transaction Primitive Description

BEGIN TRANSACTION Mark the start of a transaction
END TRANSACTION Terminate the transaction and try to commit
ABORT TRANSACTION Kill the transaction and restore the old

valuesREAD Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Issue: All or Nothing • Atomic: happens indivisibly (seemingly)

• Consistent: does not violate system
invariants

• Isolated: not mutual interference

• Durable: commit means changes are
permanent

Example: Enterprise
Application Integration (EAI)
• Transaction Processing Monitor

• Observation: Often, the data involved in a transaction is
distributed across several servers. A TP Monitor is
responsible for coordinating the execution of a transaction.

Middleware and EAI
• Middleware offers communication facilities for integration

• Remote Procedure Call (RPC): Requests are sent through local
procedure call, packaged as message, processed, responded through
message, and result returned as return from call.

• Message Oriented Middleware (MOM): Messages are sent to logical
contact point (published), and forwarded to subscribed applications.

How to integrate
• File transfer: Technically simple, but not flexible:

• Figure out file format and layout

• Figure out file management

• Update propagation, and update notifications.

• Shared database: Much more flexible, but still requires common
data scheme next to risk of bottleneck.

• Remote procedure call: Effective when execution of a series of
actions is needed.

• Messaging: RPCs require caller and callee to be up and running at
the same time. Messaging allows decoupling in time and space.

Distributive Pervasive
Systems

• Observation

• Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s
environment.

• Three (overlapping) subtypes

• Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continuous interaction between system and
user.

• Mobile computing systems: pervasive, but emphasis is on the fact
that devices are inherently mobile.

• Sensor (and actuator) networks: pervasive, with emphasis on the
actual (collaborative) sensing and actuation of the environment.

Ubiquitous Systems
• Core elements

1. (Distribution) Devices are networked, distributed, and
accessible transparently

2. (Interaction) Interaction between users and devices is highly
unobtrusive

3. (Context awareness) The system is aware of a user’s context
to optimize interaction

4. (Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed

5. (Intelligence) The system as a whole can handle a wide range
of dynamic actions and interaction.

Mobile Computing
• Distinctive features

• A myriad of different mobile devices (smartphones, tablets, GPS
devices, remote controls, active badges).

• Mobile implies that a device’s location is expected to change over
time

• ⇒

• change of local services, reachability, etc. Keyword: discovery.

• Maintaining stable communication can introduce serious problems.

• For a long time, research has focused on directly sharing resources
between mobile devices. It never became popular and is by now
considered to be a fruitless path for research.

Mobile Computing
• Bottomline: Mobile devices set up connections to

stationary servers, essentially bringing mobile computing
in the position of clients of cloud-based services.

Sensor Networks
• Characteristics: The nodes to which sensors are attached are:

• Many (10s-1000s)

• Simple (small memory/compute/communication capacity)

• Often battery-powered (or even battery-less)

Cloud Edge Continuum

Pitfalls
• Observation: Many distributed systems are needlessly complex, caused by

mistakes that required patching later on. Many false assumptions are often
made.

• False (and often hidden) assumptions

• The network is reliable

• The network is secure

• The network is homogeneous

• The topology does not change

• Latency is zero

• Bandwidth is infinite

• Transport cost is zero

• There is one administrator

