
Architectures
Distributed and Web Computing

Architectural Styles
Basic idea

• A style is formulated in terms of

• (replaceable) components with well-defined interfaces

• the way that components are connected to each other

• the data exchanged between components

• how these components and connectors are jointly configured into a
system.

• Connector

• A mechanism that mediates communication, coordination, or
cooperation among components. Example: facilities for (remote)
procedure call, messaging, or streaming.

Layered Architecture

Example:
Communication Protocols

Client Server Architecture
from socket import *
s = socket(AF_INET, SOCK_STREAM)
(conn, addr) = s.accept()
while True:

data = conn.recv(1024)
if not data: break
msg = data.decode()+"*"
conn.send(msg.encode())

conn.close()

from socket import *
s = socket(AF_INET, SOCK_STREAM)
s.connect((HOST, PORT))
msg = "Hello World"
s.send(msg.encode())
data = s.recv(1024)
print(data.decode())
s.close()

Explanation
• There is a connection-oriented service

• offered by the socket library

Application Layering
• Traditional three-layered view

• Application-interface layer contains units for interfacing to users or
external applications

• Processing layer contains the functions of an application, i.e.,
without specific data

• Data layer contains the data that a client wants to manipulate
through the application components

• Observation

• This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Application Layering

Application Layering
• Layering works well for the communications stack

• TCP/IP stack

• Application layer

• Transport layer

• Network layer

• Physical layer Physical
Data Link

Networking
Transport

Application

Source

Physical
Data Link

Physical
Data Link

Networking

Physical
Data Link

Physical
Data Link

Networking
Transport

Application

Destination

Router
Workgroup SwitchWorkgroup Switch

A B

Application Layering
• Bad examples for application layering

• Layers that are not scalable

• Excessive copying (e.g. logins are excruciatingly slow)

• Layers that introduce dependencies to components
under outside control

• Resulting in legal issues

• Chaos if a developer withdraws the component

• Alternative: Looser coupling: Service oriented
architectures

Service Oriented
Architectures

• Based on

• Objects

• Services

• Micro-services

• Each service is executed as its own thread

Service Oriented Architectures:
Object-based architectures

• Objects interact with each other through method calls

Service Oriented Architectures:
Object-based architectures

• The state of an object encapsulates data

• Methods encapsulate the transformation of the data

• Interface conceals implementation details

Service Oriented Architectures:
Object-based architectures

• Implementing remote objects

Service Oriented Architectures:
Object-based architectures

• Client binds to a remote
object by loading a proxy into
its address space

• (corresponding to a stub
for Remote Procedure
Calls)

• The proxy implements the
remote object’s interface

Service Oriented Architectures:
Object-based architectures

• When a method of the
remote object is invoked:

• Parameters are passed to
the Proxy

• Proxy marshals
parameters into a common
format

• Proxy sends the
marshalled invocation to
the server

Service Oriented Architectures:
Object-based architectures

• When a method of the
remote object is invoked:

• Message is passed on to
the Skeleton, which
unmarshalls the
parameters

• Skeleton then makes a
method call to the remote
object

• Skeleton receives result

Service Oriented Architectures:
Object-based architectures

• When a method of the
remote object is invoked:

• Skeleton marshals results
into a common format

• Marshalled results are sent
to the Proxy

• Proxy unmarshalls the
results and passes them
on to the client

Service Oriented Architectures:
Object-based architectures

• In this architecture:

• The state of the distributed system is not distributed

• It is made up of the states of the objects

• But usually only one object matters, the one accessed
by the user

Service Oriented Architectures:
Micro-service architectures

• A service is a standalone, independently deployable
software component that implements some useful
functionality.

• Example:

•

Service Oriented Architectures:
Micro-service architectures

• Services are loosely coupled:

• All interactions happen via an API

• There is no common database that is accessed

• Complicates data consistency and queries over
several services

• Eases contention for data access

Service Oriented Architectures:
Micro-service architectures

Resource based
architectures

• Resource-based architecture

• Views a distributed system as a huge collection of
resources that are individually managed by component

• Resources can be added and removed by remote
applications

• Resources can be modified and retrieved by remote
applications

Resource based
architectures

• Representational State Transfer (REST) [Fielding 2000]

• Resources are identified through a single naming
scheme

• All services offer the same interface, consisting of at
most four operations: Put, Post, Get, Delete

• Messages sent to or from a service are fully self-
described

• After executing an operation at a service, that
component forgets everything about the caller

Resource based
architectures

• REST operations

Resource based
architectures

• HTTP actions

• GET: Get a representation of this resource.

• DELETE: Destroy this resource.

• POST: Create a new resource underneath this one, based
on the given representation.

• PUT / PATCH: Replace this state of this resource with the
one described in the given representation.

• HEAD, OPTIONS, CONNECT, TRACE

• But REST HTTP, but HTTP is the application-level interface≠

Resource based
architectures

• REST Constraints

• Client/Server - Client are separated from servers by a well-defined
interface

• Stateless - A specific client does not consume server storage when it is
"at rest"

• Cache - Responses indicate their own cacheability

• Uniform interface

• Layered system - A client cannot ordinarily tell whether it is connected
directly to the end server, or to an intermediary along the way

• Code on demand (optional) - Servers are able to temporarily extend or
customize the functionality of a client by transferring logic to the client
that can be executed within a standard virtual machine

Resource based
architectures

• REST Example: Amazon Simple Storage Service — S3

• Two resources: objects (files) and buckets (directories)

• Create an object / bucket:

• Send HTTP PUT request with URI of object/bucket

• To find all objects in a bucket:

• Send HTTP GET request to bucket URI

Publish-Subscribe
Architectures

• Coupling as loose as possible

• Separate processing and coordination

• System as a collection of autonomously operating
processes

Publish-Subscribe
Architectures

• Temporal coupling: Up at the same time

• Referential coupling: Knowing or not knowing each other

• Examples of coupling:

Publish-Subscribe
Architectures

• Mailbox:

• Processes can send data to a mail-box type queue

Publish-Subscribe
Architectures

• Event-based coordination

• Process can publish notifications

• Processes can subscribe to certain notifications

Publish-Subscribe
Architectures

• Shared Data Space:

• Processes communicate via tuples

• Like the rows of a relational database table

Publish-Subscribe
Architectures

• Example: Linda Tuple Space (1989)

• OUT primitive for storing tuples

• RD primitive for reading stored tuple

• IN primitive for reading and deleting stored tuple

• in and rd are blocking. If there are no matching tuple, the
requesting process blocks

Publish-Subscribe
Architectures

• Linda example continued:

• Dining philosopher
problems:

• A bunch of
philosophers sit around
a table and think

• Sometimes, they want
to eat, for which they
need two shared forks

Publish-Subscribe
Architectures

Publish-Subscribe
Architectures

Publish-Subscribe
Architectures

• Subscribe needs to describe the items of interest

• This means naming

• Topic-based Publish-Subscribe Architecture:

• Items are described

• In the form of key-value pairs

• Content-based Publish-Subscribe Architecture

• Items are directly compared to the search criteria

Publish-Subscribe
Architectures

• Need a middleware layer that allows the matching and
forwarding

• Middleware can notify or can forward

Middleware and
Distributed Systems

Middleware
• Classical Middleware

Middleware
• Middleware: manager of resources to share and

deploy resources across a network

• Typical middleware services

• Facilities for inter-application communication.

• Security services.

• Accounting services.

• Masking of and recovery from failures.

Middleware
• Problem

• The interfaces offered by a legacy component are most
likely not suitable for all applications.

• Solution

• A wrapper or adapter offers an interface acceptable to
a client application. Its functions are transformed into
those available at the component.

Middleware Design Pattern
Wrappers

• A wrapper or adapter

• Special component that offers an interface
acceptable to a client application, of which the
functions are transformed into those available at the
component.

Middleware Design Pattern
Wrappers

• Number of wrappers can become huge

• systems could need wrappers

• Can use a broker:

N N(N − 1)

Middleware Design Pattern
Interceptors

• Interceptor — Software construct that breaks the normal flow of
control and allows other code to be executed

• Object A calls a method of object B

• Object A is offered a local interface that is the same as the
interface offered by object B. A calls the method available in that
interface.

• The call by A is transformed into a generic object invocation,
made possible through a general object-invocation interface
offered by the middleware at the machine where A resides.

• Finally, the generic object invocation is transformed into a
message that is sent through the transport-level network interface
as offered by A’s local operating system.

•

Middleware Design Pattern
Interceptors

Modifiable Middleware
• Modifiable Middleware — adaptive software

• Problem

• Middleware contains solutions that are good for
most applications

• ⇒ you may want to adapt its behavior for specific
applications.

• Interceptors are the basic solution

Centralized System
Architectures

Centralized System
Architectures

• Basic Client–Server Model

• Characteristics:

• There are processes offering services (servers)

• There are processes that use services (clients)

• Clients and servers can be on different machines

• Clients follow request/reply model regarding using services

Centralized System
Architectures

• Multi-tiered centralized system architectures

• Some traditional organizations

• Single-tiered: dumb terminal/mainframe
configuration

• Two-tiered: client/single server configuration

• Three-tiered: each layer on separate machine

Centralized System
Architectures

• Two-Tiered Systems

Centralized System
Architectures

• Component can be client and server at the same time

Example:
Network File System

• Foundations

• Each NFS server provides a standardized view of its local file
system: each server supports the same model, regardless the
implementation of the file system.

• The NFS remote access model (left) and the upload download
alternative (right

Example:
Network File System

Example:
Network File System

• VFS replaces the interface of the Client’s file system

• Client-server communication uses Remote Procedure
Calls

Example: The Web
• Simple Web Servers

Example: The Web
• Documents

• Simple documents

• Marked up with HyperText Markup Language (HTML)

• Common Gateway Interface (CGI)

• Web server executes a program based on user data

• After processing, result is served as a document to
the client

Example: The Web
• CGI uses two-tiered server

Example: The Web
• Documents

• Simple documents

• Marked up with HyperText Markup Language (HTML)

• Common Gateway Interface (CGI)

• Server Side Scripts

• Server executes a script embedded in the document

• Document gets altered

• <?php echo
$_SERVER[’REMOTE_ADDR’]; ?>

Symmetrically distributed
system architectures

Symmetrically distributed
system architectures

• Vertical distribution:

• Multi-tiered architecture

• Horizontal distribution:

• client or server physically split up into logically
equivalent parts

• each part is operating on its own share of the complete
data set

• E.g. P2P systems

P2P
• Peers are (assumed to be) equal:

• Processes acts as clients and servers

• P2P use an overlay network

• Communication channels established over a network

• Often TCP

Structured P2P
• Nodes in overlay network follow a given topology

• Example: Hypercube

Structured P2P
• Topology is used to look up data

• P2P system implements a Distributed Hash Table

• Stores key-value pairs

• Key-Value pairs where the key is the hash of the value

Structured P2P
• Example: Hypercube

• We are 0011 and look for item with

• Hash 10010100…01

• Located at 1001

• Send message to 1011, which forwards to 1001

• Document gets returned on the same route

Structured P2P
• Chord: Peers arranged in a single virtual circle

Structured P2P
• Chord

• A joining peer gets a random binary identifier

• Needs to be able to access one peer

• Finds predecessor and successor

• Predecessor sets the next link to the new peer

• New peer sets its next link to the successor

• Peer stores all items from successor with hashes it’s
id

≤

Structured P2P
• Chord:

• To find item with a given hash:

• Send request along the next links until it reaches the
correct peer

• To speed up searches:

• Peers maintain short-cut links

• Which might or might not work

Structured P2P
• Chord

Structured P2P
• Chord: We are in 28. Find item with hash 24?

Structured P2P
• Chord: We are in 28. Find item with hash 24?

• We have shortcuts to 4, 14.

Structured P2P
• Chord: We are in 28. Find item with hash 24?

• We have shortcuts to 4, 14.

• Pick the highest one ≤ 24

Unstructured P2P
• E.g Gnutella

• Each node has a list of some peers

• Upon joining, a peer get’s a list of peers from the
contacted peer

• Peers constantly update their lists of peers

• by randomly dropping

• and by randomly adding discovered peers

Unstructured P2P
• To find something:

• Flooding

• A peer contact its contacts

• Contacts contact their contacts

• … up to a certain number of iterations

• Use Time To Live field

Unstructured P2P
• Random walk

• Searching peer select one or neighbor and sends
request

• While a peer receives the request:

• If it has resource, then sends it to originator

• Otherwise: selects a single neighbor and forward
request

• Use TTL or contact originator to check whether the
walk should be stopped.

n

Unstructured P2P
• Policy-based searches in UP2P

• Examples:

• A peer updates its contact list based on
responsiveness to queries

• Prefer contacts with large lists of neighbors for
flooding,

Hierarchically Structured
P2P

• Use special nodes that keep an index of available
resources

• Use special nodes that act as brokers

• Collect data on capacity and use

• Allows to allocate resources to the best suited peers

Hierarchically Structured
P2P

• Introduces a distinction between peers

• E.g. super-peers and weak pears

Hierarchically Structured
P2P

• A weak peer does not have to be attached to the same
super-peer, but can change based on past experience

• Super-peer selection is the next problem

Example: Bit Torrent
• Bit Torrent: File-downloading system

• Force downloaders to be active participants

• Prevent “free riding”

Example: Bit Torrent
• Client looks up file at a Bit Torrent web page

• This is a global directory

• Lookup result is a “Torrent File”

• Torrent file has a link to a tracker

Example: Bit Torrent
• Trackers has a list of active servers with chunks of the

desired file

• Usually a single tracker per file

• Tracker adds requesting node to its list

• Requesting node joins a swarm

Example: Bit Torrent
• Gets a chunk from a peer in the swarm

• Then trades the chunk for another chunk with a peer in
the swarm

Hybrid System Solutions
• Real-world solutions often combine many architectures

• Some distributed systems cross organizational
boundaries

Cloud Computing
• Organizations with data centers have looked for ways to

open up their facilities to paying clients

• Utility computing: Clients upload tasks to a data center
and are charged on a per-resource basis

• Morphed into cloud computing:

• Virtualization of resources

• Service-Level Agreements (SLA)

Cloud Computing

Cloud Computing
• Make a distinction between four layers

• Hardware: Processors, routers, power and cooling systems.
Customers normally never get to see these.

• Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

• Platform: Provides higher-level abstractions for storage and such.

• Example: Amazon S3 storage system offers an API for (locally
created) files to be organized and stored in so-called buckets.

• Application: Actual applications, such as office suites (text
processors, spreadsheet applications, presentation applications).
Comparable to the suite of apps shipped with OS.

Cloud Computing
• Driven by:

• Provisioning: Only pay for what you currently use

• Outsourcing of IT & Security

• Agility

• Clustering

• …

Edge Computing
• Internet of Things

• Moving big data from IoT to cloud is not efficient:

• bandwidth, privacy, low-latency requirements

• Edge computing

• Move computation closer to IoT devices

• Fog-computing: Computing, storage, networking, data
management at within close vicinity of IoT devices

• Mist computing: computation at networks, sensors and
actuators that make up IoT components

Edge Computing

Edge Computing
• Commonly (and often misconceived) arguments

• Latency and bandwidth: Especially important for certain real-time
applications, such as augmented/virtual reality applications. Many
people underestimate the latency and bandwidth to the cloud.

• Reliability: The connection to the cloud is often assumed to be
unreliable, which is often a false assumption. There may be
critical situations in which extremely high connectivity guarantees
are needed.

• Security and privacy: The implicit assumption is often that when
assets are nearby, they can be made better protected. Practice
shows that this assumption is generally false. However, securely
handling data operations in the cloud may be trickier than within
your own organization

Edge Computing
• Managing resources at the edge may be trickier than in the cloud

• Resource allocation: we need to guarantee the availability of the
resources required to perform a service.

• Service placement: we need to decide when and where to place a
service. This is notably relevant for mobile applications.

• Edge selection: we need to decide which edge infrastructure should
be used when a service needs to be offered. The closest one may
not be the best one.

• Observation

• There is still a lot of buzz about edge infrastructures and computing,
yet whether all that buzz makes any sense remains to be seen.

Block Chain Architecture
• Distributed ledgers: Enable registration of transactions

• Transaction system:

• A transaction is

• validated

• effectuated

• stored for auditing purposes

Block Chain Architecture
• Can have a single (or a few) trusted third party

• that acts as a notary

• Lack of trust:

• Large set of participants who jointly register
transactions among them in a public ledger

Block Chain Architecture

Block Chain Architecture
• There is logically only a single chain of blocks with

validated transactions

• Each block is immutable

• Different block chain systems use different modes of

• Who carries out validation

Summary
• Distributed systems can be organized in many ways

Block Chain Architecture
• Centralized selection of validator

• A single entity decides who can validate

• against block chain principles

Block Chain Architecture
• Distributed solution with permissions

• A selected, relatively small group of servers jointly reach
consensus on which validator can go ahead.

• None of these servers needs to be trusted, as long as roughly
two-thirds behave according to their specifications.

• In practice, only a few tens of servers can be accommodated.

Block Chain Architecture
• Decentralized selection of validator

• Participants select a leader

• Only the elected leader is allowed to append a block of
validated transactions.

• Large-scale, decentralized leader election that is fair,
robust, secure, and so on, is far from trivial.

Block Chain Architecture

Block Chain Architecture

