
Communication
Thomas Schwarz, SJ



Basic Networking Model

• Drawbacks


• Focus on message-passing only


• Often unneeded or unwanted functionality


• Violates access transparency



Encapsulation of Messages



Low-level layers
• Recap


• Physical layer: contains the specification and implementation of 
bits, and their transmission between sender and receiver


• Data link layer: prescribes the transmission of a series of bits into 
a frame to allow for error and flow control


• Network layer: describes how packets in a network of computers 
are to be routed.


• Observation


• For many distributed systems, the lowest-level interface is that of 
the network layer.



Transport Layer
• Important


• The transport layer provides the actual communication 
facilities for most distributed systems.


• Standard Internet protocols


• TCP: connection-oriented, reliable, stream-oriented 
communication


• UDP: unreliable (best-effort) datagram 
communication



Middleware layer
• Middleware is invented to provide common services and 

protocols that can be used by many different applications


• A rich set of communication protocols


• (Un)marshaling of data, necessary for integrated 
systems


• Naming protocols, to allow easy sharing of resources


• Security protocols for secure communication


• Scaling mechanisms, such as for replication and 
caching



An adapted layering model

Hardware

Middleware

Application
Application protocol

Middleware protocol

Host-to-host protocol

Network

Operating
system

Physical/Link-level protocol



Types of communication
Distinguish

• Transient versus persistent communication

• Asynchronous versus synchronous communication



Types of communication
Distinguish

• Transient communication: Comm. server discards message 
when it cannot be delivered at the next server, or at the 
receiver.


• Persistent communication: A message is stored at a 
communication server as long as it takes to deliver it.



Types of communication

Synchronize

• At request submission

• At request delivery

• After request processing



Client-Server
• Some observations


• Client/Server computing is generally based on a model 
of transient synchronous communication:


• Client and server have to be active at the time of 
communication


• Client issues request and blocks until it receives 
reply


• Server essentially waits only for incoming requests, 
and subsequently processes them



Client-Server
• Drawbacks of synchronous communication


• Client cannot do any other work while waiting for reply


• Failures have to be handled immediately: the client is 
waiting


• The model may simply not be appropriate (mail, news)



Messaging
• Message-oriented middleware


• Aims at high-level persistent asynchronous 
communication:


• Processes send each other messages, which are 
queued


• Sender need not wait for immediate reply, but can do 
other things


• Middleware often ensures fault tolerance



Remote Procedure Calls
• Local procedure calls


• call by value


• call by reference


• call by copy


• (rare)


• Passing using


• registers


• stacks



Remote Procedure Calls
• Observations


• Application developers are familiar with 
simple procedure model


• Well-engineered procedures operate in 
isolation (black box)


• There is no fundamental reason not to 
execute procedures on separate machine


• Conclusion


• Communication between caller & callee 
can be hidden by using procedure-call 
mechanism.



Basic RPC Operation





Basic RPC Operations
• RPC Parameter passing


• There’s more than just wrapping parameters into a message


• Client and server machines may have different data representations 
(think of byte ordering)


• Wrapping a parameter means transforming a value into a sequence of 
bytes


• Client and server have to agree on the same encoding:


• How are basic data values represented (integers, floats, characters)


• How are complex data values represented (arrays, unions)


• Conclusion


• Client and server need to properly interpret messages, transforming them 
into machine-dependent representations



Basic RPC Operations
• Parameter 

passing in object 
based systems


• Object 
references to 
local and 
remote objects 
are treated 
differently

Client program runs on Machine A 
Server runs on Machine C 

RPC makes reference to object O1 in machine A 
and O2 in machine B 

Copy O1 (pass by value) and reference to O2  
(pass by reference)



Basic RPC Operations
• Some assumptions


• Copy in/copy out semantics: while procedure is 
executed, nothing can be assumed about parameter 
values.


• All data that is to be operated on is passed by 
parameters. Excludes passing references to (global) 
data.


• Conclusion


• Full access transparency cannot be realized



RPC Parameter Passing
• There’s more than just wrapping parameters into a message


• Client and server machines may have different data representations 
(think of byte ordering)


• Wrapping a parameter means transforming a value into a sequence of 
bytes


• Client and server have to agree on the same encoding:


• How are basic data values represented (integers, floats, characters)


• How are complex data values represented (arrays, unions)


• Conclusion


• Client and server need to properly interpret messages, transforming 
them into machine-dependent representations.



RPC Application Support
• Both sides in a RPC call need to follow the same 

conventions


• Need to implement stubs


• Often use an Interface Definition Language (IDL)



RPC Application Support

Generating stubs from an IDL file



Asynchronous RPC
• Essence


• Try to get rid of the strict request-reply behavior, but let 
the client continue without waiting for an answer from 
the server.



Asynchronous RPC

Deferred synchronous RPC:

  Clients calls Server and waits for acceptance and continues

  Server upon completion sends a message  

  Client makes a callback 

  Callbacks are user-defined functions invoked when an 

  event happens




Asynchronous RPC
C

S

call RPC

call local procedure
and return results

One way RCP


Client continues after call

Server sends a message or client polls server



Multicast RPC
• Does client know that 

there is more than one 
RPC call?


• When does the caller 
react?


• Wait for the first or 
for the last value?



Message Oriented 
Communication

• Simple transient messages with sockets



Message Oriented 
Communication



Message Oriented 
Communication

• Advanced transient messaging


• Overcome the brittleness of sockets


• ZeroMQ (2011)


• Provides a higher level of expression by pairing 
sockets: one for sending messages at process P and 
a corresponding one at process Q for receiving 
messages. All communication is asynchronous.


• Three patterns


• Request-reply; Publish-subscribe; Pipeline 



Message Oriented 
Communication

Client uses a Request 

Socket


Server uses a Response

Socket


(no listen no accept)



Message Oriented 
Communication

Publish-Subscribe 

patterns


Server publishes a 

“time server” on a

publishing socket


Clients creates a 

subscribe socket



Message Oriented 
Communication

Producer-worker pattern

or pipeline pattern:


Process wants to push 

out results and others

want to pull them


First available worker will 

pick up work from the 

producer


If there are free workers, 

one will be provided with 

a task.




Message Oriented 
Communication

• Message Passing Interface (MPI)  

• Sockets only support simple send and receive 
messages


• Communicate using general purpose protocol stacks 
(TCP/IP)


• Solution should be platform independent



Message Oriented 
Communication

• MPI:


• Forms middleware layer


• With buffers, …



Message Oriented 
Communication

• MPI:


• Designed for parallel processing


• Uses transient communications


• Serious failures are fatal (no recovery)


• Processes has an identifier: (groupID, processID)



Message Oriented 
Communication



Message Oriented 
Communication

• Message-oriented persistent communication


• Message Queuing Systems


• Message Oriented Middleware (MOM)


• provides support for persistent asynchronous 
communication


•



Message Oriented 
Communication

• Applications communicate by inserting messages in 
specific queues


• There is no guarantee that a message will be read by 
the recipient



Message Oriented 
Communication

• Queue interface



Message Oriented 
Communication

• Can install handler as a callback function


• Automatically invoked whenever a message is put into 
the queue


• Use a NOTIFY operation



Message Oriented 
Communication

• General architecture of a message-queueing system


• Queue managers


• Applications put messages into local queues and 
consume messages from local queues


• Queue managers make sure messages get delivered



Message Oriented 
Communication



Message Oriented 
Communication



Message Oriented 
Communication

• Contact addresses


• (Host, Port)-pair, Protocol (tcp/udp)


• Use special queue managers as routers 



Message Oriented 
Communication

• Observation


• Message queuing systems assume a common 
messaging protocol: all applications agree on message 
format (i.e., structure and data representation)


• Broker handles application heterogeneity in an MQ system


• Transforms incoming messages to target format


• Very often acts as an application gateway


• May provide subject-based routing capabilities (i.e., 
publish-subscribe capabilities)



Message Oriented 
Communication



Message Oriented 
Communication

• Message brokers are built on top of a message-queueing 
system



Message Oriented 
Communication

• Message brokers can be used for 


• Enterprise Application Integration (EAI)



Message Oriented 
Communication

• Example: Advanced Message-Queueing Protocol 
(AMQP) 

• Distinguishing: Messaging service, Messaging protocol, 
Messaging interface


• Advanced Message-Queuing Protocol was intended to 
play the same role as, for example, TCP in networks: a 
protocol for high-level messaging with different 
implementations.



Message Oriented 
Communication



Message Oriented 
Communication

• Basic model


• Client sets up a (stable) connection, which is a 
container for several (possibly ephemeral) one-way 
channels. Two one-way channels can form a session. A 
link is akin to a socket, and maintains state about 
message transfers.


•



Message Oriented 
Communication

• AMPQ communication


• Application sets up a connection to a queue manager


• Each connection has several one-way channels


• Sessions establish bidirectional communication


• Links transfer mesages



Message Oriented 
Communication

1. At the sender’s side, the message is assigned a unique identifier and is 
recorded locally to be in an unsettled state. The stub subsequently 
transfers the message to the server, where the AMQP stub also records 
it as being in an unsettled state. At that point, the server-side stub 
passes it to the queue manager.


2. The receiving application (in this case the queue manager), is assumed 
to handle the message and normally reports back to its stub that it is 
finished. The stub passes this information to the original sender, at 
which point the message at the original sender’s AMQP stub enters a 
settled state.


3. The AMQP stub of the original sender now tells the stub of the original 
receiver that message transfer has been settled (meaning that the 
original sender will forget about the message from now on). The 
receiver’s stub can now also discard anything about the message, 
formally recording it as being settled as well.



Message Oriented 
Communication

• AMPQ messaging


• Happens in layer above communication layer


• Takes place between nodes: producer, consumer, or 
queue



Message Oriented 
Communication



Message Oriented 
Communication



Message Oriented 
Communication

• Multicasting


• Application-level tree-based multi-casting


• Organize nodes of a distributed system into an 
overlay network and use that network to disseminate 
data:


• Oftentimes a tree, leading to unique paths


• Alternatively, also mesh networks, requiring a form of 
routing



Message Oriented 
Communication

• Overlay networks allow multi-casting


• Link stress: How often does a packet cross the same 
link


• Stretch: delay in overlay / delay in network



Message Oriented 
Communication

• Flooding-based multicasting


• P simply sends a message m to each of its neighbors. 
Each neighbor will forward that message, except to P, 
and only if it had not seen m before.



Message Oriented 
Communication

• Gossip-based data dissemination


• Epidemic protocols


• Assume there are no write–write conflicts


• Update operations are performed at a single server


• A replica passes updated state to only a few neighbors


• Update propagation is lazy, i.e., not immediate


• Eventually, each update should reach every replica



Message Oriented 
Communication

• Two forms of epidemics


• Anti-entropy: Each replica regularly chooses another 
replica at random, and exchanges state differences, 
leading to identical states at both afterwards


• Rumor spreading: A replica which has just been 
updated (i.e., has been contaminated), tells several 
other replicas about its update (contaminating them as 
well).



Message Oriented 
Communication

• Anti-entropy


• Principle operations


• A node P selects another node Q from the system at random.


• Pull: P only pulls in new updates from Q


• Push: P only pushes its own updates to Q


• Push-pull: P and Q send updates to each other


• Observation


• For push-pull it takes O(log(N)) rounds to disseminate updates to all N 
nodes (round = when every node has taken the initiative to start an 
exchange).



Message Oriented 
Communication



Message Oriented 
Communication

• Rumor spreading:


• Basic model


• A server S having an update to report, contacts other servers. If 
a server is contacted to which the update has already 
propagated, S stops contacting other servers with probability 
pstop.


• Observation


• If s is the fraction of ignorant servers (i.e., which are unaware of 
the update), it can be shown that with many servers


• s = e−(1/pstop+1)(1−s)



Message Oriented 
Communication



Message Oriented 
Communication

• Removing data:


• Make a deletion into an update to a NULL content


• Sending out death certificates


• Should become dormant



Stream Oriented 
Communication

• Streams: 
• Timing is crucial 

• Continuous media 
• Meaning of message depends on temporal 

relationship to previous messages 
• Motion , Audio 

• Discrete media 
• text, still images



Stream Oriented 
Communication

• Data stream: sequence of data units 
• Asynchronous transmission mode: 

• Data items are transmitted in order 
• without timing constraints 

• Synchronous transmission mode: 
• Data items are transmitted in order 
• Maximum end-to-end delay for each unit in the stream 

• Isochronous transmission mode: 
• Data units are transferred on time 
• Maximum and minimum end-to-end delay 

• “Bounded delay jitter"



Stream Oriented 
Communication

• Simple streams 
• Complex streams 

• consist of several related simple streams, the 
sub-streams



Stream Oriented 
Communication

(a) stream between two 
processes 

(b) stream between two 
devices



Stream Oriented 
Communication

• Multicasting 
• Receivers can have different requirements 
• Use filters to adjust quality



Stream Oriented 
Communication

• Quality of Service (QoS) 
• Flow specification: bandwidth requirements, 

transmission rates, delays, …



Stream Oriented 
Communication

Token bucket algorithm 

Generate tokens at constant rate 
If bucket is full, tokens fall away 
Each time application sends data,  
needs to remove tokens from bucket



Stream Oriented 
Communication

• Currently, no model for 


• specifying QoS parameters


• describing resources in a communication system


• translating QoS parameters to resource usage



Stream Oriented 
Communication

• QoS protocol: Resource reSerVation Protocol 
(RSVP)



Stream Oriented 
Communication

• RSVP 
• Senders provide flow specification 
• Hand it over to RSVP process 
• RSVP process stores specification 
• Sender sets up path to receiver(s)  

• providing flow specification to all intermediate nodes 
• RSVP server when receiving a reservation request: 

• Checks whether enough resources are available 
• Checks whether receiver has permission to make 

the reservation



Stream Oriented 
Communication

• Stream synchronization 
• Sub streams in a complex stream need to be 

synchronized 
• Simple form: discrete data stream (slides) and 

continuous data stream (audio) 
• Complex form: Synchronizing video and audio 

stream, two audio streams for stereo (with max. 
jitter of less than 20 μsec 

• Need to synchronize between data units



Stream Oriented 
Communication

• Explicit synchronization at the data level



Stream Oriented 
Communication

• Synchronization at high level



Stream Oriented 
Communication

• Synchronization at high level: 
• Multimedia middleware offers interfaces for 

controlling video and audio streams 
• Multiplex different streams into a single stream: 

• MPEG streams


