
Laboratory 3: Strings and Lists
1. Use the: for x in lista construction in the implemtation of a function that takes as

argument a list and returns the product of all list elements. For example

	 product([2,3,5,7,11,13])

returns 30030.

2. Write a function fibonacci of a number n that starts out with a list [0,1]. It then appends n-2
times the sum of the last two elements in the list. If the list is called lista, then the last two
elements are lista[-1] and lista[-2]. The function returns the list. For instance, calling
fibonacci(10) yields [0, 1, 1, 2, 3, 5, 8, 13, 21, 34].

3. Write a function of a string that returns the number of digits in the string. (Hint: You can use
the string ‘0123456789’ and ask whether a letter is in that string. You can also use the
isdigit function in python e.g. ask whether letter.isdigit() is True or False before you
increment a counter.) Example: nnr_digits("3 wise monkeys and 4 dumb buffalo:”) returns
2.

4. Write a function that takes two lists as input and returns a list with elements that are in both
of the lists. For example, intersection([1,3,"hello", 3.45], [3.45,
“hello"]) returns ['hello', 3.45].

5. Write a function of a string that returns the number of consonants in the string. (Hint: you
can use the string of consonants
“bBcCdDfFgGhHjJkKlLmMnNoOpPqQrRsStTvVwWxXzZ”.)

6. Write a function that replaces every vowel in a string with a digit, starting with 0. Example:
change_str("Thomas Schwarz”) returns 'Th0m1s Schw2rz’

7. Pig-Latin translator: Our goal is to write a function that transforms a string into its pig-latin
equivalent. If a word starts with a vowel and ends in a consonant, then we just add “ay” to
the word. Examples are:

	 omelet —> omeletay
	 egg —> eggay

If a word starts with a vowel and ends in a vowel, then we add “way” to the word.
Examples are

	 are —> areway
	 I —> Iway
If a word starts with one or more consonants, “a consonant combination”, then move the
consonant combination to the end of the word and add “ay” to it. Examples are

	 pig —> igpay
	 smiles —> ilessmay
	 stupid —> upidstay
We solve this problem by generating several helper functions. The first helper function
decides (returns a Boolean) whether a word starts and ends with a vowel. The second

helper function decides whether a word starts with a vowel and ends with a consonant. The
third helper function deals with the remaining case. It takes a word and returns a list with
two words. The first element of the list is the word without the leading consonant
combination and the second one is the rest of the word. For example

	 helper3(“frugal”) returns [“ugal”, “fr”].
You can implement this function by going through the letters in the argument string,
maintaining to results list, beginning and end. While you are reading consonants from the

string, you add the to the beginning list. When you hit the first vowel, you add to the end
list. To implement something like this, we need a state, a Boolean value. Here is a sample
implementation:

def helper3(word):
 be = []
 en = []
 seeing_consonants = True
 for letter in word:
 if seeing_consonants:
 if letter not in "aeiou": #a consonant
 be.append(letter)
 else:
 seeing_consonants = False
 en.append(letter)
 else:
 en.append(letter)
 return ["".join(en), "".join(be)]

While we are in the state seeing_consonants, we are looking at consonants and place them
into the be(ginning)-list. The moment we see the first vowel, we leave the state (by setting
seeing_consonants to False) and start appending to the en(d)-list.

