Activities: Tuples, Sets, and Frozen Sets

1. Convert the following assignments in the following program into a tuple assignment.
```
sepal length = 5.1
petal_length = 3.2
sepal_width = 1.7
petal__width = 0.9
print(sepal_length, sepal_width, petal_length, petal_width)
```

2. Write a function count that takes as its only parameter a file name and then returns the number of lines, the number of words, and the number of characters (without new lines). Then write a program that asks the user for a file name and then displays the result of count in a nice format. Here is an example of the latter:
```
Enter the name of a file: tuples.py
There are 39 lines, }117\mathrm{ words, and }762\mathrm{ characters in the file
tuples.py.
```

3. Tuple unpacking can be used to define functions with arbitrary number of arguments. Assume that we want to create a function multiply that returns the product of an arbitrary number of arguments. We can do so using tuple unpacking in the definition of the function:
```
def mult(*args):
    result = 1
    for x in args:
        result *= args
    return result
```

As you noticed, the asterisk in front of args means that args is really a tuple. Indeed, in the body of the function, we access the components x of args iteratively and multiply them to result. Using this construct, write functions with an arbitrary number of arguments that
(A) return the arithmetic mean $\frac{1}{n}\left(a_{1}+a_{2}+\ldots+a_{n}\right)$ of a number of floating point numbers.
(B) return the geometric average $\sqrt[n]{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}}$ of a set of numbers.
(C) return the harmonic mean $\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots \frac{1}{a_{n}}}$ of a set of numbers.
4. Write a function that takes as arguments three variables: a left boundary a, a right boundary b, and a function f. The function returns the trapezoid approximation for the definite integral

$$
\int_{a}^{b} f(x) d x \approx\left(\frac{1}{4} f(a)+\frac{1}{2} f\left(\frac{a+b}{2}\right)+\frac{1}{4} f(b)\right)(b-a) .
$$

Write a program that creates a tuple (a, b, f) and then uses tuple-unpacking when calling the function on it.

