
Activities: Tuples, Sets, and Frozen Sets
1. Convert the following assignments in the following program into a tuple assignment.

2. Write a function count that takes as its only parameter a file name and then returns the
number of lines, the number of words, and the number of characters (without new lines).
Then write a program that asks the user for a file name and then displays the result of count
in a nice format. Here is an example of the latter:

Enter the name of a file: tuples.py
There are 39 lines, 117 words, and 762 characters in the file
tuples.py.

3. Tuple unpacking can be used to define functions with arbitrary number of arguments.
Assume that we want to create a function multiply that returns the product of an arbitrary
number of arguments. We can do so using tuple unpacking in the definition of the function:

As you noticed, the asterisk in front of args means that args is really a tuple. Indeed, in the
body of the function, we access the components x of args iteratively and multiply them to
result. Using this construct, write functions with an arbitrary number of arguments that

(A) return the arithmetic mean � of a number of floating point
numbers.

(B) return the geometric average � of a set of numbers.

(C) return the harmonic mean � of a set of numbers.

4. Write a function that takes as arguments three variables: a left boundary a, a right
boundary b, and a function f. The function returns the trapezoid approximation for the
definite integral

1
n

(a1 + a2 + … + an)

n a1 ⋅ a2 ⋅ … ⋅ an

n
1
a1

+ 1
a2

+ … 1
an

sepal_length = 5.1
petal_length = 3.2
sepal_width = 1.7
petal_width = 0.9

print(sepal_length, sepal_width, petal_length, petal_width)

def mult(*args):
 result = 1
 for x in args:
 result *= args
 return result

� .

Write a program that creates a tuple (a,b,f) and then uses tuple-unpacking when calling the
function on it.

∫
b

a
f (x)d x ≈ (1

4
f (a) +

1
2

f (
a + b

2
) +

1
4

f (b))(b − a)

