Activities: Module 6 - for loops

1. Use a for loop with various range statements to write programs that print out the following set of numbers on separate lines.
2. $0,1,2,3,4,5$
3. $1,2,3,4,5$
4. $0,2,4,6,8,10$ (There are two solutions, one uses multiplication by 2 , the other one uses the third argument to range, the step-size.)
5. $1,3,5,7,9,11$ (Again, there are two solutions.)
6. $10,9,8,7,6,5,4,3,2,1$
7. $10,9,8,7,6,5,4,3,2,1,0$
8. A program that asks the user for a word, then prints out the letters in the word on separate lines. This program uses the for letter in word: construction.
9. Programs that calculate and print the following sums. (I give the results in parenthesis.) Recall that we calculate these sums using an accumulator that is initially equal to 0 . We then use a for loop such as for i in range (1, 10001): for the first sum. Each iteration adds the addends to the accumulator. It is easy to make a mistake. The first parameter of the range is the beginning value, the second value is the stop value, i.e. the value just before which we stop the iterations.
10. $\sum_{i=1}^{10000} i^{2}=333383335000$.
11. $\sum_{i=1}^{1000} \frac{1}{1+i^{2}}=1.07567$.
12. $\sum_{i=0}^{100} \frac{(-1)^{i}}{i+1}=0.693646$.
13. We can also calculate products, but now the accumulator's initial value has to be 1 .

Calculate

1. $\prod_{\nu=0}^{100} \frac{101-\nu}{1+\nu}=1$
2. $\prod_{\nu=0}^{100} \frac{1+\nu}{1+\nu^{2}}=2.97341 \times 10^{-157}$
