
Sockets
Thomas Schwarz, SJ

Networking
• Networking is organized in layers:

• Application: Access to network resources

• Transport: Provides message and error delivery

• Internet: Moves packets from source to destination
through networks owned by different entities

• Network Interface: How to move data between two
machines / switches / routers

Networking
• Transport layer provides:

• UDP: connectionless, unreliable, fast, datagrams

• TCP: established connection with error resilience

Transmission Control
Protocol: TCP

• Process-to-process communication

• Stream-oriented protocol

• Full duplex communication

• Connection oriented

• Reliable Service

Transmission Control
Protocol: TCP

• TCP: Receives bytes to send from process and sends
them reliably to the receiving process

Stream Of Bytes

Sending
Process

Sent

Written
but not sent

Receiving
Process

Received
but not read

UDP
• User Datagram Protocol (UDP)

• Only adds socket addressing to the networking layer

• Useful if you do not want the overhead of connection
establishment and maintenance

UDP Header

Length: Includes the 8B UDP

 header

Checksum: Calculated from a pseudo-

 header (part of IP header)

 UDP header (without check

 -sum)

 Data

Transport Service Primitives
• Typical primitives provided to application programs

Primitive Packet sent Meaning
Listen -
 Block until some process tries to connect

Connect Connection Request Actively attempt to establish a connection
Send Data Send information

Receive - Block until a data packet arrives
Disconnect Disconnection Request Request a release of the connection

Transport services provided
to application layer

• Transport layer embeds segments in packets that are
embedded in frames

Segment

Segment

Berkeley Sockets
• Developed for Unix 4.2BSD (1983)

• Still used for internet programming especially on Unix systems

• Windows has winsock

Berkeley Socket
• Basic Idea:

• Network connection is like a file

• Read from / Write to like to a file

• Socket procedures in Unix are systems calls

• Implemented in the “top half” of the kernel

• Windows implemented as a library (DLL)

Berkeley Sockets

Transport Addresses
• Transport layer allows communications between

processes

• Implemented via ports

• Each host is identified by IP address

• Each process is identified by a port number

Port Numbers
• Internet Corporation for Assigned Names and Numbers

(ICANN)

• Well-known ports: Assigned by ICANN

• Registered ports: Neither assigned nor controlled, but
can be registered to prevent duplication

• Dynamic ports: used as temporary or private port
numbers

0-1023 1024-49,151 49,152 - 65,535

Well-
-known

Registered Dynamic
or private

Port Numbers
• Example:

• telnet (needs to be installed on MacOS and Windows
OS)

• telnet 129.6.15.28 13

• Connects to the daytime service at NIST Gaitersburg
on port 13

• In MacOS / UNIX, you can find port assignments in

• /etc/services

Port Numbers

Port Numbers

from: 134.48.21.29 50379
to: 129.6.15.28 13
tcp

telnet client

NIST Gaitersburgh

daytime service

from: 129.6.15.28 13
to: 134.48.21.29 50379
tcp, daytime service
Daytime: \n58074 17-11-17 03:21:00 00 0 0 528.4 UTC(NIST) * \n

Port Numbers
• Destination address selects the

server

• Destination port address selects
the service (here day-time-server)

• Source address & port are
needed to find the destination for
the response

from: 134.48.21.29 50379
to: 129.6.15.28 13
tcp

from: 129.6.15.28 13
to: 134.48.21.29 50379
tcp, daytime service
Daytime: \n58074 17-11-17 03:21:00 00 0 0 528.4 UTC(NIST) * \n

Port Numbers

Finding Open Ports
• To find open ports:

• Can use a port scanner over the network that
systematically tries out all ports

• Can use systems tools

• MacOS:

thomasschwarz@Peter-Canisius ~ % lsof -i -P | grep -i "listen"

rapportd 527 thomasschwarz 5u IPv4 0xc604072814ca13a1 0t0 TCP *:62127 (LISTEN)

rapportd 527 thomasschwarz 9u IPv6 0xc604072814573699 0t0 TCP *:62127 (LISTEN)

ControlCe 1666 thomasschwarz 12u IPv4 0xc604072801237e41 0t0 TCP *:7000 (LISTEN)

ControlCe 1666 thomasschwarz 13u IPv6 0xc6040727f7e8ad79 0t0 TCP *:7000 (LISTEN)

ControlCe 1666 thomasschwarz 16u IPv4 0xc6040727f968c381 0t0 TCP *:5000 (LISTEN)

ControlCe 1666 thomasschwarz 17u IPv6 0xc6040728037e4b39 0t0 TCP *:5000 (LISTEN)

mongod 1736 thomasschwarz 10u IPv4 0xc604072814a513a1 0t0 TCP localhost:27017 (LISTEN)

Google 62219 thomasschwarz 136u IPv4 0xc604072814c9fe41 0t0 TCP localhost:49787 (LISTEN)

Finding Open Ports
• On Windows:

• netstat

• nbtstat

Socket Address
• The combination of IP address and port number is the

socket address

Transport Service Primitives
• Primitives that applications might call to transport data for

a simple connection-oriented service:

• Client calls connect, send, receive, disconnect

• Server calls listen, receive, send, disconnect

Segment

Transport Service Primitives

Solid lines (right) show
client state sequence

Dashed lines (left) show
server state sequence

Transitions in italics are
due to segment arrivals.

Addressing
• How does an application find port numbers?

• Portmapper (which listens at a well known port)

• User sends service name and gets port address

• Services must register with the portmapper

• Initial connection protocol

• Each machine with services has a process server that acts
as proxy for less heavily used servers

• inetd on Unix systems

• Listens to a range of ports waiting for connection requests

• Process server spawns requested server (if necessary)

