
Relationships
Between Classes

Thomas Schwarz, SJ

Relationships between
Classes

• An address class

• Write a __str__ dunder for indian addresses

class Address:

 def __init__(self, country, city, street,

 number, postal, state, apartment = None):

 self.country = country

 self.city = city

 self.street = street

 self.postal = postal

 self.state = state

 self.number = number

 self.apartment = apartment

Relationships between
Classes

• A class Name

• Wide worldwide variety of names

• What do we need?

• Fields: First Name, Last Name, Middle Names,
Patronym, Matronym, Titles, …

• Method: Legal name (short)

• Method: Legal name (complete)

• Method: Address

Relationships between
Classes

• A class can include another class

• E.g. Class Person

• Has fields Name (a class) and Address (a class)

• We can use all methods defined on the
components

class Person:

 def __init__(self, name, address, ID):

 self.name = name

 self.address = address

 def postal_label(self):

 return str(self.name)+'\n'+str(self.address)

Relationships between
Classes

• One class can be a specialization of another class

• E.g. Employee is a specialization of Person

• Every Employee is a person

• “is-a” relationship

• But not every person is an employee

• Distinguish this from the “has-a” relationship

Inheritance
• “Is-a” relationship

• Captured in OO through Inheritance

Inheritance
"We started to push on the inheritance idea as a way to
let novices build on frameworks that could only be
assigned by experts"

- -Alan Kay: The Early History of Smalltalk

Inheritance Example
• Playing cards

• Have suit and rank

class Card:

 def __init__(self, suite, rank):

 self.suite = suite

 self.rank = rank

 def __str__(self):

 return "({:2s},{:2s})".format(

 self.suite[:2],

 self.rank[:2])

 def __repr__(self):

 return '[Card' + str(self)+']'

Inheritance
• To inherit from a class, just add the name of the base

class in parenthesis

class BlackjackCard(Card):

Inheritance
• To initialize a derived class, usually want to call the

initializer of the base class
values = {'ace':11, '2':2, '3':3, '4':4, '5':5, '6':6, '7':7, '8':8,

 '9':9, '10':10, 'jack':10, 'queen':10, 'king':10}

class BlackjackCard(Card):

 def __init__(self, suite, rank):

 super().__init__(suite, rank)

 self.value = values[rank]

 self.softvalue = 1 if rank=='ace' else self.value

 def __str__(self):

 return "{} of {} with value {}({})".format(

 self.rank,

 self.suite,

 self.value,

 self.softvalue

)

Inheritance
• Notice:

• All methods in the base class are still available and
attributes

• But we can also override them

def __hash__(self):

 return super().__hash__()^self.softvalue

Calling base
class function

Inheritance
• Multiple inheritance

• Allowed but tricky

• Diamond Problem

A

ping

B

pong

C

pong

D

pang

class A:

 def ping(self):

 print('ping')

class B:

 def pong(self):

 print('pong')

class C:

 def pong(self):

 print('PONG')

class D(B,C):

 def ping(self):

 super().ping()

 def pang(self):

 super().ping()

 super().pong()

 C.pong(self)

Inheritance
• Method Resolution for d.pong():

• First look in the current class

• Then look into B

• Then look into C

• Then look into A

• Implemented via __mro__, which lists the classes in a
certain order

• Can avoid ambiguity by giving explicit class names in the
invocation

class D(B,C):

 def ping(self):

 super().ping()

 def pang(self):

 super().ping()

 super().pong()

 C.pong(self)

Inheritance
• Multiple inheritance can be used

• Can use inheritance to define an interface:

• A base class that requires that certain methods are
implemented

• Then multiple inheritance is fine

Classes through Special
Methods

• Can find all attributes of an instance defined using
__dict__ or dir :

>>> c=Card('heart', 'king')

>>> c.__dict__

{'suite': 'heart', 'rank': 'king'}

>>> dir(c)

['__class__', '__delattr__', '__dict__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__retr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'rank',
'suite']

Classes through Special
Methods

• Equality versus Identity

• Default evaluation for == looks at location of storage

• Can get storage location with object.__repr__()

• Or in most Python implementation, with id

>>> id(d)

140299613922544

>>> object.__repr__(d)

'<__main__.Card object at 0x7f9a0ca664f0>'

>>> hex(id(d))

'0x7f9a0ca664f0'

Classes through Special
Methods

• Equality versus Identity

• This is usually not the behavior we want

• Equality means all attributes are equal

• Need to define __eq__ in your class
class Card:

 def __eq__(self, other):

 return self.suite==other.suite and self.rank==other.rank

>>> d=Card('heart', 'king')

>>> c=Card('heart', 'king')

>>> d==c

True

Classes through Special
Methods

• Equality versus Identity

• We can still compare for identity with is

>>> d is c

False

Classes through special
methods

• Identity, equality, equality of names are all different
concepts

• As the following excerpt will show

Classes through Special
Methods

‘You are sad,’ the Knight said in an anxious tone: ‘let me sing you a song to comfort you.’
‘Is it very long?’ Alice asked, for she had heard a good deal of poetry that day.
‘It’s long,’ said the Knight, ‘but very, very beautiful. Everybody that hears me sing it—either
it brings the tears into their eyes, or else—’
‘Or else what?’ said Alice, for the Knight had made a sudden pause.
‘Or else it doesn’t, you know. The name of the song is called “Haddocks’ Eyes.”’
‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel interested.
‘No, you don’t understand,’ the Knight said, looking a little vexed. ‘That’s what the name is
called. The name really is “The Aged Aged Man.”’
‘Then I ought to have said “That’s what the song is called”?’ Alice corrected herself.
‘No, you oughtn’t: that’s quite another thing! The song is called “Ways and Means”: but that’s
only what it’s called, you know!’
‘Well, what is the song, then?’ said Alice, who was by this time completely bewildered.
‘I was coming to that,’ the Knight said. ‘The song really is “A-sitting On A Gate”: and the
tune’s my own invention.’

Classes through special
methods

• See:

• Name of the name

• Name

• Call

• Identity

Classes through Special
Methods

• We cannot make cards into elements of sets without
making them hashable

•

>>> seta = {c}

Traceback (most recent call last):

 File "<pyshell#36>", line 1, in <module>

 seta = {c}

TypeError: unhashable type: 'Card'

Classes through Special
Methods

• Need to declare a method __hash__ and a method __eq__

•

• Now it works

class Card:

 def __hash__(self):

 return hash(self.suite)*hash(self.rank)

>>> c = Card('heart', 'king')

>>> seta = {c}

>>> c in seta

True

Classes through Special
Methods

• But to do this, we should make cards immutable

• Right now, we can just say

• Strategy: declare the components private

• Create a getter function

• Which we do by using a property generator

c.rank = 'ace'

