
SQL Primer
Thomas Schwarz, SJ

 
SQL DDL

• Create a database with CREATE DATABASE

CREATE DATABASE IF NOT EXISTS USNavy;

SQL DDL
• Data Types

• Character strings of fixed or varying length

• CHAR(n) - fixed length string of up to n characters

• VARCHAR(n) - fixed length string of up to n characters

• Uses and endmarker or string-length for storage
efficiency

• Bit strings

• BIT(n) strings of length exactly n

• BIT VARYING(n) - strings of length up to n

SQL DDL
• Data Types:

• Boolean: BOOLEAN: TRUE, FALSE, UNKNOWN

• Integers: INT = INTEGER, SHORTINT

• Floats: FLOAT = REAL, DOUBLE, DECIMAL(n,m)

• Dates: DATE

• SQL Standard: ‘1948-05-14’)

• Times: TIME

• SQL Standard: 19:20:02.4

SQL DDL
• Data Types:

• MySQL: ENUM('M', 'F')

SQL DDL
• CREATE TABLE creates a table

CREATE TABLE Movies(

 title CHAR(100),

 year INT,

 length INT,

 genre CHAR(10),

 studioName CHAR(30),

 producerC# INT

);

SQL DDL

CREATE TABLE MovieStar(

 name CHAR(30),

 address VARCHAR(255),

 gender CHAR(1),

 birthday DATE

);

SQL DDL
• Drop Table drops a table

DROP TABLE Movies;

SQL DDL
• Altering a table with ALTER TABLE

• with ADD followed by attribute name and data type

• with DROP followed by attribute name

ALTER TABLE MovieStar ADD phone CHAR(16);

ALTER TABLE MovieStar DROP Birthday;

SQL DDL
• Default Values

• Conventions for unknown data

• Usually, NULL

• Can use other values for unknown data

CREATE TABLE MovieStar(

 name CHAR(30),

 address VARCHAR(255),

 gender CHAR(1) DEFAULT '?',

 birthday DATE DEFAULT '0000-00-00'

);

SQL DDL
• Declaring Keys

1. Declare one attribute to be a key

2. Add one additional declaration:

• Particular set of attributes is a key

• Can use

1. PRIMARY KEY

2. UNIQUE

SQL DDL
• UNIQUE for a set S:

• Two tuples cannot agree on all attributes of S unless
one of them is NULL

• Any attempted update that violates this will be
rejected

• PRIMARY KEY for a set S:

• Attributes in S cannot be NULL

SQL DDL

CREATE TABLE MovieStar(

 name CHAR(30) PRIMARY KEY,

 address VARCHAR(255),

 gender CHAR(1),

 birthday DATE

);

SQL DDL

CREATE TABLE MovieStar(

 name CHAR(30),

 address VARCHAR(255),

 gender CHAR(1) DEFAULT '?',

 birthday DATE DEFAULT '0000-00-00',

 PRIMARY KEY (name)

);

SQL DDL

CREATE TABLE Movies(

 title CHAR(100),

 year INT,

 length INT,

 genre CHAR(10),

 studioName CHAR(30),

 producerC# INT,

 PRIMARY KEY (title, year)

);

SQL Work Bench
• Starting MySQL server through a terminal

• Find mysql.server

SQL Workbench
• Open up SQL workbench

• Select the SQL server (should be only one)

SQL Workbench
• Select panels on the right

SQL Workbench
• Select Schemas

• Should have at least one master schema called sys

SQL Workbench
• Write queries in middle panel

• Execute them with the flash symbol

• CREATE DATABASE IF NOT EXISTS sales;

SQL Workbench
• After creating a database, need to update schemas in the

upper right corner

SQL Workbench
• There is more information on the schema

SQL Workbench
• The information symbol (i) has more information

SQL Workbench
• Execute a query

•

• Now we can manipulate and use this database

USE sales;

SQL Workbench
• Use queries to create a table

• sales(purchase_number:int,

 date_of_purchase:date,

 customer_id:int,

 item_code VARCHAR(10))

SQL Workbench

SQL Workbench
• Create a table

customers(customer_id: int,

 first_name: varchar(255),

 last_name: varchar(255),

 email_address: varchar(255),

 number_of_complaints: int)

SQL Workbench

SQL Workbench
• Referring to MYSQL objects

• Use a default database

• USE sales;

• SELECT * FROM customers;

• Use the dot notation to specify database

• SELECT * FROM sales.customers;

SQL Workbench
• Information on Tables appears next to them in the left

panel

SQL Workbench
• Inserting into a data base:

SQL Workbench

SQL Workbench

SELECT
• SELECT is the most frequent command

• Basic use:

• SELECT attribute1, attribute2, … FROM
databasetable

• SELECT * FROM databasetable

SELECT
• SELECT — WHERE clause:

• Imposes a condition on the results

SELECT
• = equals (comparison operator)

• AND, OR

• IN, NOT IN

• LIKE, NOT LIKE

• BETWEEN … AND

• EXISTS, NOT EXISTS

• IS NULL, IS NOT NULL

• comparison operators

SELECT
• AND operator

• Combines two statements (concerning one or more
tables)

SELECT

 *

FROM

 employees

WHERE

 first_name = 'Denis' and gender = 'M;

SELECT
• OR is the Boolean or

• Trick Question: How many records will this query return?

SELECT

 *

FROM

 employees

WHERE

 last_name = 'Denis' AND gender = 'M' OR gender = 'F'

SELECT
• Operator precedence:

• AND < OR

SELECT

 *

FROM

 employees

WHERE

 last_name = 'Denis' AND (gender = 'M' OR gender = 'F')

SELECT
• Quiz:

• Retrieve all female employees with first name 'Aruna' or
'Kelly'

SELECT
• IN, NOT IN

• Checks for membership in lists

• MySQL: faster than equivalent OR formulation

SELECT

 *

FROM

 employees

WHERE

 first_name NOT IN ('Elvis','Kevin','Thomas');

SELECT
• LIKE

• Pattern matching

• Wild cards

• % means zero or more characters

• _ means a single letter

• [] means any single character within the bracket

• ^ means any character not in the bracket

• - means a range of characters

Like Examples
• WHERE name LIKE 't%'

• any values that start with 't'

• WHERE name LIKE '%t'

• any values that end with 't'

• WHERE name LIKE '%t%'

• any value with a 't' in it

• WHERE name LIKE '_t%'

• any value with a 't' in second position

Like Examples
• WHERE name LIKE '[ts]%'

• any values that start with 't' or 's'

• WHERE name LIKE '[t-z]'

• any values that start with 't', 'u', 'v', 'w', 'x', 'y', 'z'

• WHERE name LIKE '[!ts]%'

• any value that does not start with a 't' or a 's'

• WHERE name LIKE '_t%'

• any value with a 't' in second position

SELECT
• BETWEEN … AND …

• Selects records with a value in the range

• endpoints included

SELECT

 *

FROM

 employees

WHERE

 hire_data between 1990-01-01 and 1999-12-31;

SELECT
• SELECT DISTINCT

SELECT DISTINCT

 gender

FROM

 employees

SELECT
• Aggregate Functions

• Applied to a row of a result table

• COUNT

• SUM

• MIN

• MAX

• AVG

SELECT
• SELECT COUNT

• SELECT

 COUNT(emp_no)

FROM

 employees

SELECT
• SELECT COUNT

SELECT COUNT(employees.emp_no)

FROM employees

WHERE

 first_name LIKE ('Tom%') or first_name
LIKE('Tho%');

SELECT
• Combine COUNT with DISTINCT

SELECT

 COUNT(DISTINCT first_name, last_name)

FROM

 employees

SELECT
• Combine COUNT with DISTINCT

SELECT

 COUNT(DISTINCT emp_no)

FROM

 salaries

WHERE

 salary >=100000;

SELECT
• ORDER BY

• Orders result by default in ascending order

• ASC ascending

• DSC descending

SELECT

 *

FROM

 employees

WHERE

 hire_date > '2000-01-01'

ORDER BY first_name;

SELECT
• GROUP BY

• Just before ORDER BY in a query

• Needed with aggregate functions

• Example: Getting all first names in order
SELECT

 first_name

FROM

 employees

GROUP BY first_name;

SELECT
• GROUP BY

• Example: Counting first names in the employee data
base

• Hint: you want to include the attribute on which you
group

SELECT

 first_name, COUNT(first_name)

FROM

 employees

GROUP BY first_name

ORDER BY first_name;

SELECT
• GROUP BY

• Example: Counting first names in the employee data
base

• To make it look better, add an AS clause

SELECT

 first_name, COUNT(first_name)

FROM

 employees

GROUP BY first_name

ORDER BY first_name;

Queries with more than one
table

• Normally, combine tables by listing them in the FROM
clause

SELECT name

FROM movies, moviesExec

WHERE title = ‘Star Wars’

 AND movies.producerC# = moviesExec.cert#

Queries with more than one
table

• Find all movie execs that live with a star

• MovieStar(name, address, gender, birthdate)

MovieExec(name, address, cert#, netWorth)

SELECT MovieStar.name, MovieExec.name)

FROM MovieStar, MovieExec

WHERE

MovieStar.address = MovieExec.address

Queries with more than one
table

• Tuple Variables

• Sometimes need to combine two tuples in the same
table

• Can extend the FROM clause

SELECT Star1.name, Star2.name

FROM MovieStars Star1, MovieStars Star2

WHERE

Star1.address = Star2.address

AND Star1.name < Star2.name

Queries with more than one
table

• Unions, intersections, excepts

• To execute the corresponding set operations

•
(SELECT name, address

 FROM movieStars

 WHERE gender = 'F'

)

INTERSECT

(SELECT name, address

 FROM movieExecs

 WHERE netWorth > 1000000

)

Updates
• Changes existing records

• Syntax:

• Does not need to change all attributes

• If there is no WHERE condition, all records are updated

UPDATE tablename

SET attr1=val1, attr2=val2, …

WHERE conditions;

Commit and Rollback
• A database allows us to rollback to a previous state

unless we have committed

• MySQLWorkbench has an auto-commit button

• Rollback puts database into the state of the last
commit

Delete
• Just like an update

• The Where clause is not necessary

DELETE FROM tablename

WHERE condition

Delete, Drop, Truncate
• Drop Table:

• Definite action: cannot recover with rollback

• Truncate:

• All records removed

• Auto-increment values reset

• Table description stays

• Delete:

• Delete removes records row by row

• Auto-increment values remain

• Slower than truncate

Subqueries
• Subqueries are helper queries

Subqueries
• Subqueries producing a scalar value

• Example: Producer of Star Wars

• Can achieve the same effect by first looking for the
producerC#

SELECT name

From movies, movieExec

WHERE title = 'Star Wars'

 AND

 producerC# = cert#;

Subqueries
• Example: Producer of Star Wars

• This might be implemented with the same query
execution as before

SELECT name

FROM movieExec

WHERE cert# =

(SELECT producerC#

 FROM movies

 WHERE title = 'star wars'

)

Subqueries
• Subqueries with conditions involving relations

• We obtain a relation as a subquery

• E.g. with subquery (SELECT * FROM foobar)

• Queries are:

• EXISTS R

• s IN R s NOT IN R

• s > ALL R NOT s > ALL R

• s > ANY R NOT s > ANY R

R

Subqueries
• Subqueries involving tuples

• Tuple is a list of scalar values

• Can compare tuples with the same number of
components

• Example:

• Finding the producers of 'Harrison Ford' movies

Subqueries
SELECT name

FROM movieExec

WHERE cert# IN

 (SELECT producerC#

 FROM movies

 WHERE (title, year) IN

 (SELECT movieTitle, movieYear

 FROM StarsIn

 WHERE starName = 'Harrison Ford'

)

);

Subqueries
• To analyze a query, start with the inmost query

SELECT name

FROM movieExec

WHERE cert# IN

 (SELECT producerC#

 FROM movies

 WHERE (title, year) IN

 (SELECT movieTitle, movieYear

 FROM StarsIn

 WHERE starName = 'Harrison Ford'

)

);

Subqueries
• This query can also be written without nested subqueries

SELECT name

FROM movieExec, movies, starsIn

WHERE cert# = producerC#

 AND starsIn.title = movies.title

 AND starsIn.year = movie.year

 AND starName = 'Harrison Ford'

Subqueries
• Correlated subqueries

• Subquery is evaluated many times

• Once for each value given

• Example

SELECT title

FROM movies Old

WHERE year < ANY (

 SELECT year

 FROM movies

 WHERE title = Old.title

);

Subqueries
• Scoping rules

• First look for the subquery and tables in that subquery

• Then go to the nesting subquery

• etc.

Subqueries
• Subqueries in FROM clauses

• Here we join on a subquery aliased Prod

SELECT name

FROM movieExecs, (SELECT producerC#

 FROM movies, starsIn

 WHERE movies.title = starsIn.title

 AND movies.year = starsIn.year

 AND starName = 'Harrison Ford'

) Prod

WHERE cert# = Prod.producerC#

Eliminating Duplicates
• Use Distinct

• Warning: Invoking distinct is costly

SELECT DISTINCT name

FROM movies

Eliminating Duplicates
• Union, intersection, difference usually remove duplicates

automatically

• If we do not want this, but bag semantics:

• Use the keyword all

(SELECT title, year

FROM movies)

UNION ALL

(SELECT movieTitle AS title,

 movieYear AS year

 FROM

 starsIn);

Aggregate Functions
• COUNT

• numeric and non-numeric data

• null values excepted

• SUM, MIN, MAX, AVG - only numeric data

• Exercise: Find the number of different stars in the starsIn
table

SELECT COUNT(DISTINCT name)

FROM starsIn

Aggregate Functions
• Find the combined net-worth of movieExecs

• Find the average net-worth of movieExecs

SELECT SUM(networth)

FROM movieExecs

SELECT ROUND(AVG(networth),2)

FROM movieExecs

Aggregate Functions
• Dealing if NULL values

• IFNULL(EXPR1, EXPR2):

• Gives EXPR1 if it is not NULL and EXPR2 if not

• SELECT

name,

IFNULL(studio, 'not president') AS studio

FROM movieExecs;

Aggregate Functions
• COALESCE(EXPR1, EXPR2, EXPR3, … EXPRn)

• Gives first nonNULL expression

Grouping
• Aggregation happens usually with grouping

• To group, use GROUP BY followed by a WHERE clause

SELECT studioName, SUM(length) AS totalRunTime

FROM movies

GROUP BY studioName;

Grouping
• Example

• Computing the total run time of movies produced by a
producer

SELECT name, SUM(length) AS totalRunTime

FROM MovieExec, Movies

WHERE producerC# = cert#

GROUP BY name;

Grouping
• Aggregation and Nulls

• NULL does not contribute to a sum, average, or count

• Grouping and Nulls

• NULL is an ordinary value for grouping purposes

• Aggregation except COUNT over an empty bag gives
result NULL

