
Python — SQLite
Thomas Schwarz, SJ

Basics
• Need to import sqlite3

• Comes installed with Python

• Create a connector to a database

• Then use a cursor to interact with the database

Basics

import sqlite3

with sqlite3.connect('my_database.db') as connector:
 crsr = connector.cursor()
 print('connected to the database')

importing the latest
version

Basics

import sqlite3

with sqlite3.connect('my_database.db') as connector:
 crsr = connector.cursor()
 print('connected to the database')

Connect to a database
This will create the database

is necessary

Basics

import sqlite3

with sqlite3.connect('my_database.db') as connector:
 crsr = connector.cursor()
 print('connected to the database')

With the cursor, you will send
commands and obtain results

Basics

connector.commit()

If you do not commit, then the
database will not reflect your

updates!

Creating SQL Commands
• Hint:

• If you are developing:

• Create your sql commands as strings

• Print them out to check for syntax

• Because error messages are not very informative

Creating SQL Commands
• Recall:

• To embed python values into strings

• Use blueprint.format()

• Use f-strings

• f-strings have an initial f:

• f'an example string'

• To embed variable values, put the variable name in
curly brackets

• f'these are the values of {x} and {y}'

Creating SQL Commands
• Creating tables:

• sql_cmd1 = """
CREATE TABLE IF NOT EXISTS salesperson (
 name VARCHAR(30),
 telephone VARCHAR(10)
);
"""
 sql_cmd2 = """
CREATE TABLE IF NOT EXISTS customer (
 name VARCHAR(30),
 address VARCHAR(60),
 telephone VARCHAR(10)
);
"""

Creating SQL Commands
• Creating Tables:

 sql_cmd3 = """
CREATE TABLE IF NOT EXISTS sales (
 item VARCHAR(30),
 client VARCHAR(30),
 seller VARCHAR(30),
 date VARCHAR(9),
 price INT
);
"""

Creating SQL Commands
• Notice that sqlite does not have a special class for date /

time / datetime

• There are a number of functions to translate to the
various formats

• Standard format is Int, containing the Unix time
(Seconds since January 1, 1970)

Creating SQL Commands
• Executing with cursor.execute

 crsr.execute(sql_cmd1)
 crsr.execute(sql_cmd2)
 crsr.execute(sql_cmd3)

Creating SQL Commands
• Retrieving results

• Use the fetchall method to obtain a list like object

• Use the fetchone method to obtain a single row

• Use as an iterator

crsr.execute("SELECT * FROM customer")
print(crsr.fetchall())

crsr.execute("SELECT * FROM customer")
for item in crsr:
 print(item)

Preventing SQL Injection
Attacks

• If you create sql statements from input provided by users,
you can get into trouble

Preventing SQL Injection
Attacks

• You can do this safer by using a placeholder, followed by
a tuple of values

•

•
cur.execute("insert into lang values (?, ?)", ("C", 1972))

lang_list = [
 ("Fortran", 1957),
 ("Python", 1991),
 ("Go", 2009),
]
cur.executemany("insert into lang values (?, ?)", lang_list)

