Python — SQLite

Thomas Schwarz, SJ

Basics

* Need to import sqlite3
e Comes installed with Python
 Create a connector to a database

e Then use a cursor to interact with the database

Basics

importing the latest

version

import sglite3

with sglite3.connect ('my database.db') as connector:
crsr = connector.cursor ()
print ('connected to the database')

Basics

Connect to a database

This will create the database
IS necessary

import sglite3

with sglite3.connect ('my database.db') as connector:
crsr = connector.cursor ()
print ('connected to the database')

Basics

With the cursor, you will send

commands and obtain results

import sglite3

with sglite3.connect ('my dgtabase.db') as connector:
crsr = connector.cursor ()
print ('connected to the database')

Basics

If you do not commit, then the

database will not reflect your
connector.commit (updates!

Creating SQL Commands

e Hint:
* |f you are developing:
e Create your sql commands as strings
* Print them out to check for syntax

e Because error messages are not very informative

Creating SQL Commands

* Recall:
* To embed python values into strings
e Use blueprint.format()
* Use f-strings
e f-strings have an initial f:

e f'an example string'

* To embed variable values, put the variable name In
curly brackets

e f'these are the values of {x} and {y}'

Creating SQL Commands

e Creating tables:

sgql cmdl = """
CREATE TABLE IF NOT EXISTS salesperson (
name VARCHAR(30),
telephone VARCHAR(10)

) 7
sgql cmdz = """
CREATE TABLE IF NOT EXISTS customer (
name VARCHAR(30),
address VARCHAR (60),
telephone VARCHAR(10)

) ;

Creating SQL Commands

 Creating Tables:

mwiiw

sgql cmd3 =
CREATE TABLE IF NOT EXISTS sales (

1tem VARCHAR(30),

client VARCHAR(30),

seller VARCHAR(30),

date VARCHAR(9),

price INT

) ;

mwiiw

Creating SQL Commands

* Notice that sqglite does not have a special class for date /
time / datetime

e There are a number of functions to translate to the
various formats

e Standard format is Int, containing the Unix time
(Seconds since January 1, 1970)

Creating SQL Commands

 Executing with cursor.execute

crsr.execute (sgl cmdl)
crsr.execute (sgl cmd2)
crsr.execute (sgl cmd3)

Creating SQL Commands

* Retrieving results

e Use the fetchall method to obtain a list like object

crsr.execute ("SELECT * FROM customer")
print (crsr.fetchall ())

 Use the fetchone method to obtain a single row

e Use as an iterator

crsr.execute ("SELECT * FROM customer")
for item 1n crsr:
print (1tem)

Preventing SQL Injection
Attacks

* |f you create sgl statements from input provided by users,
you can get into trouble

HI, THIS 15

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

!

~OH.YES UTTE
RBOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
-~ YOUVE LEARNED
¢ TOSANMZE YOUR
DATABASE INPUTS.,

Preventing SQL Injection
Attacks

* You can do this safer by using a placeholder, followed by
a tuple of values

e cur.execute("insert into lang values (2?2, 2)", ("C", 1972))

lang list = |
("Fortran", 1957),
("Python", 1991),
("Go", 2009),

]

cur.executemany ("insert into lang values (?, ?)", lang list)

