
Transport Layer
Thomas Schwarz, SJ

Transport service
• Responsible for delivering data across networks with the

desired reliability or quality

Physical
Link

Network
Transport
Application

Transport Layer
• Difference to the Network Layer:

• Transport layer runs at the endpoints only

• Network layer runs (mainly) at the routers

• Transport layer can make transport service more reliable
than the underlying network

• Transport layer primitives are implemented as library
procedures

• Which are independent of network primities

Transport Layer

(a)Environment of the data link layer. (b)Environment of the
transport layer.

• Transport layer is between hosts

• Creates a more reliable means of communication using
the network

Transport Layer vs Network
Layer

Laptop Datacenter

Internet

Process

Process

Process

Process

Process

Network Layer Protocols

Transport Layer Protocols

Transport layer protocols provide communication

from process to process.

Transport Layer Duties
• Flow control

• Can use push or pull paradigm

Consumer

Producer

1: Delivery

2: Flow Control

Pushing

Consumer

Producer

2: Delivery

1: Request

Pulling

Transport Layer Duties
• Error Control

• Detecting and discarding corrupted packets

• Keeping track of lost and discarded packets and
resending them

• Recognizing duplicate packets and discarding them

• Buffering out-of-order packets until the missing
packets arrive

Transport Layer Duties
• Error Control

• Use error detecting / correcting codes

• Use sequence numbers to order packets

• Use acknowledgments as a positive signal for error
control

Transport Layer Duties
• Transport layer offers connection-oriented (TCP) and

connectionless (UDP) services

Transport Service Primitives
• Typical primitives provided to application programs

Primitive Packet sent Meaning
Listen -
 Block until some process tries to connect

Connect Connection Request Actively attempt to establish a connection
Send Data Send information

Receive - Block until a data packet arrives
Disconnect Disconnection Request Request a release of the connection

Transport services provided
to application layer

• Transport layer embeds segments in packets that are
embedded in frames

Segment

Segment

Berkeley Sockets
• Developed for Unix 4.2BSD (1983)

• Still used for internet programming especially on Unix systems

• Windows has winsock

Berkeley Socket
• Basic Idea:

• Network connection is like a file

• Read from / Write to like to a file

• Socket procedures in Unix are systems calls

• Implemented in the “top half” of the kernel

• Windows implemented as a library (DLL)

Berkeley Sockets

Transport Addresses
• Transport layer allows communications between

processes

• Implemented via ports

• Each host is identified by IP address

• Each process is identified by a port number

Port Numbers
• Internet Corporation for Assigned Names and Numbers

(ICANN)

• Well-known ports: Assigned by ICANN

• Registered ports: Neither assigned nor controlled, but
can be registered to prevent duplication

• Dynamic ports: used as temporary or private port
numbers

0-1023 1024-49,151 49,152 - 65,535

Well-
-known

Registered Dynamic
or private

Port Numbers
• Example:

• telnet (needs to be installed on MacOS and Windows
OS)

• telnet 129.6.15.28 13

• Connects to the daytime service at NIST Gaitersburg
on port 13

• In MacOS / UNIX, you can find port assignments in

• /etc/services

Port Numbers

Port Numbers

from: 134.48.21.29 50379
to: 129.6.15.28 13
tcp

telnet client

NIST Gaitersburgh

daytime service

from: 129.6.15.28 13
to: 134.48.21.29 50379
tcp, daytime service
Daytime: \n58074 17-11-17 03:21:00 00 0 0 528.4 UTC(NIST) * \n

Port Numbers
• Destination address selects the

server

• Destination port address selects
the service (here day-time-server)

• Source address & port are
needed to find the destination for
the response

from: 134.48.21.29 50379
to: 129.6.15.28 13
tcp

from: 129.6.15.28 13
to: 134.48.21.29 50379
tcp, daytime service
Daytime: \n58074 17-11-17 03:21:00 00 0 0 528.4 UTC(NIST) * \n

Port Numbers

Finding Open Ports
• To find open ports:

• Can use a port scanner over the network that
systematically tries out all ports

• Can use systems tools

• MacOS:

thomasschwarz@Peter-Canisius ~ % lsof -i -P | grep -i "listen"
rapportd 527 thomasschwarz 5u IPv4 0xc604072814ca13a1 0t0 TCP *:62127 (LISTEN)
rapportd 527 thomasschwarz 9u IPv6 0xc604072814573699 0t0 TCP *:62127 (LISTEN)
ControlCe 1666 thomasschwarz 12u IPv4 0xc604072801237e41 0t0 TCP *:7000 (LISTEN)
ControlCe 1666 thomasschwarz 13u IPv6 0xc6040727f7e8ad79 0t0 TCP *:7000 (LISTEN)
ControlCe 1666 thomasschwarz 16u IPv4 0xc6040727f968c381 0t0 TCP *:5000 (LISTEN)
ControlCe 1666 thomasschwarz 17u IPv6 0xc6040728037e4b39 0t0 TCP *:5000 (LISTEN)
mongod 1736 thomasschwarz 10u IPv4 0xc604072814a513a1 0t0 TCP localhost:27017 (LISTEN)
Google 62219 thomasschwarz 136u IPv4 0xc604072814c9fe41 0t0 TCP localhost:49787 (LISTEN)

Finding Open Ports
• On Windows:

• netstat

• nbtstat

Socket Address
• The combination of IP address and port number is the

socket address

Transport Service Primitives
• Primitives that applications might call to transport data for

a simple connection-oriented service:

• Client calls connect, send, receive, disconnect

• Server calls listen, receive, send, disconnect

Segment

Transport Service Primitives

Solid lines (right) show
client state sequence

Dashed lines (left) show
server state sequence

Transitions in italics are
due to segment arrivals.

Addressing
• How does an application find port numbers?

• Portmapper (which listens at a well known port)

• User sends service name and gets port address

• Services must register with the portmapper

• Initial connection protocol

• Each machine with services has a process server that acts
as proxy for less heavily used servers

• inetd on Unix systems

• Listens to a range of ports waiting for connection requests

• Process server spawns requested server (if necessary)

Socket Programming In
Python

• Python translates the UNIX socket interface

• IPv4: Use a tuple IP-address, port number

• Sockets go through a life cycle:

• Creation, Connection, Receiving / Sending, Closing

• Creation, Binding, Listening, Closing

Socket Programming In
Python

• Example:

• A simple writer to another process

• Data is send as a byte stream

• Using local-loop to avoid opening the firewall

Socket Programming In
Python

• Server:

• Create socket

import socket

HOST = '127.0.0.1' #Loopback interface
PORT = 65431 #Silly port

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

Socket Programming In
Python

• Bind socket to port and listen

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 s.bind((HOST, PORT))
 s.listen()
 conn, addr = s.accept()

Socket Programming In
Python

• Receive data from client, stop when no data remains

• Data is send in binary, as UTF-8

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 s.bind((HOST, PORT))
 s.listen()
 conn, addr = s.accept()
 print('Connection from:', conn)
 while True:
 data = conn.recv(1024)
 if not data:
 break
 #conn.sendall(data) to return
 print(data.decode('UTF-8'))

Socket Programming In
Python

• Sender / Client:

• Instead of binding, we directly connect to the socket

import socket

HOST = '127.0.0.1' #Loopback interface
PORT = 65431 #Silly port

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 s.connect((HOST, PORT))

Socket Programming In
Python

• Sender / Client:

• Now we can write to the server

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 s.connect((HOST, PORT))
 myinput = b'?:'
 while myinput:
 s.send(myinput)
 myinput = bytes(input('?:'), 'utf-8')
 s.close() #not necessary

UDP
• User Datagram Protocol (UDP)

• Only adds socket addressing to the networking layer

• Useful if you do not want the overhead of connection
establishment and maintenance

UDP Header

Length: Includes the 8B UDP

 header

Checksum: Calculated from a pseudo-

 header (part of IP header)

 UDP header (without check

 -sum)

 Data

UDP Applications
• Replacement for daytime

• Domain Name Service

• Real time services (Phone over IP, Skype, …)

• Congested networks:

• UDP does not try to control congestion and therefore does
not send additional packets

• Trivial File Transfer Protocol: Error- and flow control are built in
at the application level

• Multicasting: Built into UDP software, but not TCP

• RIP: Routing Information Protocol

Transmission Control
Protocol

• Process-to-process communication

• Stream-oriented protocol

• Full duplex communication

• Connection oriented

• Reliable Service

TCP
• Sending and receiving buffers mediate between transport

and application layer

Stream Of Bytes

Sending
Process

Sent

Written
but not sent

Receiving
Process

Received
but not read

TCP
• Bytes are bundled into segments

Sending
Process

Sent

Written
but not sent

Receiving
Process

Received
but not read

H Data

H Data

H Data

H Data

H Data

H Data

H Data

TCP Segment Header

TCP Sequence Number
• Refers to a byte count

• TCP chooses an arbitrary number — Initial Sequence
Number (ISN) — between 0 and 232 -1

• Sequence number for the first segment is the ISN

• Sequence number for the next segment is the number
of bytes in the first segment added to ISN

• Sequence number for the next segment is the number
of bytes in the previous segment added to previous
segment number

• Sequence numbers wrap around 0

TCP Sequence Number
• Actually:

• Need to keep segments apart in the following scenario:

• Process makes a TCP connection

• System fails

• System and process restarts

• Process makes the same TCP connection

• Pre- and post-crash segments need to be
distinguished

Acknowledgment Numbers
• A TCP connection is duplex:

• When a connection is established, both parties send
and receive packets.

• Receiver sends acknowledgments embedded in their
packets

• Senders use timers to resend un-acknowledged
packages

• Receiver discards corrupted packages

• Sender realizes that they are lost because of lack of
acknowledgment and a timer

Sliding Window
• Sequence numbers are numbers modulo 232

• Sliding window is less than half of the sequence number
range

12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 Initial Position

12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 Five Packets Sent

12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 Two packets acknowledged
Sliding Window moves

Four more packets sent
Sliding window is full
Cannot send more packets

Three packets acknowledged
Sliding window moves

12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 150 1 2 3 4 5 6 7 8 9 10 11 Three packets acknowledged
Sliding window moves

12 13 14 15 0 1 23 4 5 6 7 8 9 10 11

Five packets sent12 13 14 150 1 2 3 4 5 6 7 8 9 10 11

Two packets acknowledged
Sliding window moves

Categories of a TCP
Transmission Stream

• At the sender:

• Four categories

1. Bytes sent and acknowledged

2. Bytes sent but not yet acknowledged

3. Bytes not yet sent, but the recipient is ready

4. Bytes not sent and the recipient is not ready

Send Window

Not sent, recipient ready to receive Not sent, recipient not readySent but not yet acknowledgedSent and Acknowledged

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

TCP Transmission Stream
• At the receiver:

1. Bytes received and acknowledged

2. Bytes received and not acknowledged

3. Bytes not yet received but ready to receive

4. Bytes not yet received and not ready to receive

TCP Transmission Stream
Send Window

• Send Window:

• The bytes that the sender is allowed to transmit

• Category 2 and 3

• Usable Window:

• The bytes that the sender is still allowed to send

• Category 3

Send Window

Not sent, recipient ready to receive Not sent, recipient not readySent but not yet acknowledgedSent and Acknowledged

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

TCP Transmission Stream
• Lacking acknowledgments:

• Each segment triggers a timer

• If the timer expires and the segment is not
acknowledged, it is retransmitted

• This works independently of whether the segment was
dropped or the segment with the acknowledgment was
dropped

TCP Segment Header

TCP Segments
• Header length

• 4b field for the number of 4Bs in the header

• Headers can be between 20 and 60 bytes

TCP-Segment
• Control flags: Set as bit flags

• CWR — Congestion window reduced (rare)

• ECN — Echo. Used by ECN-TCP connections (rare)

• URG — Urgent: Receiving TCP stack can process the urgent
data immediately

• ACK — Acknowledgment

• PSH — Push

• RST — Reset

• SYN — Synchronize

• FIN — Terminate connection

TCP-Segment
• Window size — TCP receiver window size:

• How much data is the receiving device willing to
receive at any moment

• If the receiver is overwhelmed, will send a zero window
size

• Sender probes with TCP Window Update messages to
get flow going again

TCP-Segment
• Checksum

• Includes segment and an IP pseudo-header

• Use is mandatory

TCP-Segment
• Urgent pointer

• Used only when URG flag is set

• Defines a value that needs to be added to the
sequence number

• This defines the number of the last urgent byte

TCP Connections
• TCP transmits data in full-duplex mode

• Three way handshake:

• Server sends a SYN packet

• with the Syn bit set

• with a starting syn-number

• Receivers sends a SYN-ACK packet

• with a starting syn-number for the other direction

• Server sends an ACK packet

Client Server

seq: 8000

S

seq: 15000

ack 8001
S

A

seq: 8001ack: 15001A

TCP Connection Setup

Three protocol scenarios for establishing a connection using a three-
way handshake. CR denotes CONNECTION REQUEST. (a)Normal
operation. (b)Old duplicate CONNECTION REQUEST appearing out of
nowhere. (c)Duplicate CONNECTION REQUEST and duplicate ACK

TCP Connections
• SYN carries no data, but is counted as one byte in a

stream

• SYN-ACK carries no data, but is counted as one byte in a
stream

• If ACK carries no data, it is not counted as a byte

Syn

Syn Ack

Ack

Data sent

Data sent

Data received

Data sent

ack: 15001

seq: 8001

A P

Data
bytes 8001 — 9000

ack: 15001

seq: 9001

A P

Data
bytes 9001 — 10000

ack: 10001
seq: 15001

A rwnd: 3000

Data
bytes 15000 - 15020

ack: 8001
seq: 15000

A S rwnd: 5000

seq: 8000

S

ack: 15001

seq: 8001

A rwnd: 10000

ack: 15021

seq: 10001

A P rwnd 8000

Data
bytes 10001 — 10100

ack: 15021

seq: 10101

A P rwnd 8000

Data
bytes 10101 — 10200

ack: 15021

seq:10201

A F rwnd: 8000

ack: 10201
seq: 15001

A

ack: 10201
seq: 15001

A

Data
bytes 15021 - 16021

ack: 16021

seq: 10201

A rwnd: 8000

ack: 10201
seq: 16021

A F

ack: 16021

seq:10201

A

Data sent

Fin sent

Fin acknowledged

Data received

Data acknowledged

Fin Received

Fin acknowledged

TCP Connections
• To tear down a connection

• Three-way handshake

• One party sends a FIN message

• Counts as one byte

• Other party responds with a FIN-ACK message

• First party acknowledges

TCP-Connection
• Half-close

• Used when one sides does not want to send any more
data

• Initiator sends a Fin message

• Receiver acknowledges

• Receiver can still send segments to the initiator

• Initiator only sends acknowledgments

• Eventually, receiver sends a Fin message

• Initiator acknowledges

Syn Flood
• Sending many syn requests forces receiver to spend

resources

• Because receiver needs to remember its syn number
set in the syn-ack packet

• Kevin Mitnick used it to bring down machines that he was
incorporating

TCP - Windows
• TCP uses two windows:

• The send window (swin)

• The receive window (rwin)

TCP - Send Window
• Sliding Window: Maximum number of unacknowledged

bytes that a device is allowed to have outstanding

• Usable Window: Amount of the send window that the
device is still allowed to send

• Window size in bytes

• Sliding window algorithms

• Window size cannot be more than half the number
of segment numbers

• Window slides with acknowledgments from receiver

TCP - Receive Window
• Necessary because segments can arrive out of order

• Receive window defines the byte numbers that can be
accepted.

• Bytes outside of the receive window are not accepted.

• The receiver publishes rwnd, the difference between
buffer size and the number of bytes to be pulled by the
process

TCP - Receive Window

2010 2011 2237 2238

Allocated buffer

Bytes pulled
by process

Bytes received and
acknowledged, but not

pulled by process

2239 3138…… …

Bytes that can
be received

Receive Window
Size

Next byte
expected

to be
received

Bytes that cannot
be received

3139 3140 …

TCP-Receive Window
• Receive window closes by receiving segments

• Receive window opens by process consuming bytes

2010 2011 2237 2238 2239 3138…… …

Left
wall

3139 3140 …

Right
wall

closing opening

Window Management in
TCP

TCP - Flow Control
• Flow control balances

• rate at which a producer can produce

• rate at which a receiver can consume

• TCP forces sender and receiver to adjust their flow
control

TCP - Flow Control
• Send window changes controlled by receiver

• Closes when receiver sends an ack

• Left wall is moved to the right

• Opens, when the receive window size (rwnd) allows it:

• new AckNr + new rwnd > last AckNr + last rwnd

• If this is violated, then the window shrinks

• which can cause problems, because sender might
already have sent data

TCP - Flow Control
• Window shut-down

• Receiver sends a rwnd of zero

• Means receiver does not want any data

• Sender can probe by sending segments with a single
byte

• The acknowledgment by receiver can reset the rwnd if
so desired

Silly Window Syndrome 1
• If the send window is very small

• Sender can send segments with only few bytes

• TCP packets have an overhead of 40B

• 41B to send 1B is a lot of overhead

• But it is worse, when we take layers 1 and 2 into
account

Nagle’s algorithm
• Sender sends the first piece of data it receives from

process

• Even if it is only one byte

• Sender afterwards accumulates data

• Data is sent if

• Enough data has accumulated for a maximum sized
segment

• An acknowledgment has been received

Silly Window Syndrome 2
• If the receiver has a process that consumes bytes slowly:

• Sender fills buffer

• Receiver advertises a very small rwnd

• Sender sends accordingly a very small segment

Silly Window Syndrome

Clark’s Solution
• Send an acknowledgment as soon as data arrives

• But announce a window size of zero

• Until there is enough space to accommodate a
maximum-sized segment

Delayed Acknowledgments
• Only acknowledge segments when there is enough space

for a maximum-sized segment

• In order to not cause the sender to resend segments, do
not delay acknowledgment by more than 500 msec.

Error Control
• Checksum

• Each segment has a checksum

• Corrupted packets are detected and not acknowledged

Acknowledgment Types
• Original: Cumulative acknowledgment

• Receiver advertises the next byte it expects

• Indicated by Ack bit set

• Selective Acknowledgments (SACK)

• SACK reports

• a block of bytes that is out of order

• a block of bytes duplicated

• Implemented as an option in the TCP header

Generating
Acknowledgment

• Rules for generating acknowledgments:

1. When you send a packet: piggy-backing

2. Don’t send an ack if you are only acknowledging a single
segment or if 500 msec have passed

3. If the second unacknowledged segment arrives

4. If segments with out-of-order numbers arrives, immediately
ack with the sequence number of the next expected segment

• Rapid retransmission

5. When missing segments arrive, ack immediately

6. If duplicate segments arrive, immediately send an ack
indicating the next in-order segment.

TCP Timer Management
• Timers are more difficult at the transport layers

(a) Probability density of acknowledgement arrival times in the data link
layer. (b) Probability density of acknowledgement arrival times for TCP.

TCP Timer Management
• TCP needs a dynamic algorithm

• For each connection, maintain Smoothed Round-Trip
Time (SRTT)

• Use exponentially weighted moving average to adjust

• Jacobson: Maintain and update also roundtrip time
variation

• Karn: There are problems if the medium is unreliable. Only
update estimates with non-retransmitted segments

SRTT =
7

8
SRTT +

1

8
RoundtripTime

TCP Congestion Control
• Goodput is a function of offered load

TCP Congestion Control
• Load with highest power represents an efficient load

power =
load

delay

TCP - Congestion Control
• Fairness

• What does it mean to allocate a scarce resource
(congested network connections) fairly

• Complicated by flows sharing different links

• Max-Min fairness

• Bandwidth of one flow cannot be increased without
decreasing the bandwidth of another flow with an
allocation that is not larger

TCP - Congestion Control
• All routes have the same capacity 1

• Four flows: A, B, C, D

• B, C, D compete for the link between R4 and R5

• B and A compete for the link between R2 and R3

Max-min bandwidth allocation for four flows.

TCP - Congestion Control
• Max Min fair allocations

• Can be calculated with complete knowledge of net

• Can start with flows at zero

• Increase flows slowly until they are limited by a
bottleneck

TCP - Congestion Control
• Max-Min fairness

• Can be easily manipulated

• BitTorrent (in P2P systems) opens many different
connections

• All of which get their share

TCP - Congestion Control
• Convergence

• Good algorithms reach quickly a fair and efficient
allocation of bandwidth

Changing bandwidth allocation over time.

TCP - Congestion Control
• Regulating the sending

rate:

• Sending rate is limited

• By flow control if the
receiver has
insufficient buffering

• By congestion, if there
is insufficient
bandwidth (a) A fast network feeding a low-capacity receiver.

(b) A slow network feeding a high-capacity receiver.

TCP - Congestion Control
• eXplicit Congestion Protocol (Katabi, 2002)

• Routers tell sources the rate at which they might send

• Explicit Congestion Notification with TCP

• Routers set bits on packets that experience congestion
to warn senders to slow down

• Fast TCP (Wei, 2006)

• Measures round-trip delay as a signal

• Compound TCP (Windows)

• Uses packet loss and end-to-end delay

TCP - Congestion Control

Protocol Signal Explicit? Precise?
XCP Rate to use Yes Yes
TCP with ECN Congestion warning Yes No
FAST TCP End-to-end delay No Yes
Compound TCP Packet loss & end-to-end

delay
No Yes

CUBIC TCP Packet loss No No
TCP Packet loss No No

TCP - Congestion Control
• Control Laws

• Congestion signal tells when senders need to change
their rate

• Control laws specify how they adjust their rates

TCP - Congestion Control

Additive and multiplicative bandwidth adjustments.

TCP - Congestion Control
• Additive Increase — Multiplicative Decrease (AIMD) law

Additive Increase Multiplicative Decrease (AIMD) control law.

TCP - Congestion Control
• Competition with other protocols

• TCP is the dominant flow protocol with congestion
control

• Other streaming protocols are TCP-friendly if and only
if they are fair to TCP

TCP - Congestion Control
• TCP over wireless links

• Loss rates of over 10% are common for wireless frames

• Congestion control schemes that use packet loss as
indicator

• Will throttle TCP over wireless unnecessary

• Can:

• Use masking: retransmission of wireless frames

• Use different timescales (tiny for layer 2, large for
layer 4)

TCP - Congestion Control

Congestion control over a path with a wireless link.

TCP - Congestion Control
• TCP Congestion Control

• Congestion Window — Number of bytes that a sender may
have in the network at any time

• Different from the flow control window

• Uses AIMD

• Developed by van Jacobson

• Based on congestion collapse in the early internet (1986)

TCP - Congestion Control
• All TCP algorithms assume that lost packets are caused

by congestion and monitor time-outs

• Good timers are essential

TCP - Congestion Control

A burst of packets from a sender and the returning ack clock.

TCP - Congestion Control

• Acks timing gives the rate at which the slow link can
digest packages

TCP - Congestion Control
• Slow Start algorithm

• Exponential growth of segments sent per round-trip
time.

TCP - Congestion Control
• Slow Start Algorithm

• Pretty soon, this will fill up a network connection

• Algorithm defines a slow start threshold

• Initially very high

• Get’s reduced whenever there is congestion

• Algorithm switches from exponential to additive
increase once the slow start threshold is crossed

TCP - Congestion Control

Additive increase from an initial congestion window of one
segment

TCP - Congestion Control
• Duplicate acknowledgments

• Acks with the same byte acknowledged

• Likely that another packet has arrived out of order

• Fast retransmission:

• Retransmit after receiving three duplicate acks

TCP - Congestion Control

Slow start followed by additive increase in TCP Tahoe.

TCP - Congestion Control

Fast recovery and the sawtooth pattern of TCP Reno.

Long Fat Networks
• Long distance high bandwidth does not lend itself to existing

protocols

• 32b sequence number

• 56 kbps leased lines between routers (original internet)

• takes 1 week to cycle through sequence numbers

• 10 Mbps:

• takes 57 minutes to wrap around

• 1 Gbps:

• takes 34 seconds

• less than 120 second maximum packet lifetime

Long Fat Networks
• Flow control window is too small

The state of transmitting 1 Mbit from San Diego to Boston. (a) At
t = 0. (b) After 500 µsec. (c) After 20 msec. (d) After 40 msec.

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall , 2011

Long Fat Networks
• Bandwidth Delay Product

• Useful measure for analyzing network performance

• Represents the capacity of the pipe

• 1Gbps link between San Diego and Boston

• Bandwidth delay product is 40 million bits

• Burst of 0.5MB only fills 1.25% of capacity

Long Fat Networks
• Simple retransmission schemes

• When sender discovers that a segment has been lost

• Needs to resend that segment and all previous ones

• Since packets are now big, bit loss

Long Fat Networks
• Long fat networks are bound by delay

• Remote procedure call protocols e.g. will function
poorly

Time to transfer and acknowledge a 1-Mbit file over a 4000-km line.

Long Fat Networks
• Communication speeds improve faster than computing

speeds

• Need protocols that are designed for speed

• Not for bandwidth optimization

