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Conditional Probability
• Given two events  and , we define the conditional 

probability as 





"probability of A given B"


•    Write also as:


A B

P(A |B) =
P(A ∩ B

P(B)

P(A ∩ B) = P(A |B)P(B)



Conditional Probability
• Bayes' Theorem: An observation of extreme importance 


• Giving rise to a new way of statistics


Theorem:        


• Expresses a probability conditioned on B in one 
conditioned on A


• Proof:  



• Now solve for 

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

P(A |B)P(B) = P(A ∩ B) = P(B ∩ A) = P(B |A)P(A)

P(A |B)



Conditional Probability
• We can express a probability for one event in terms of 

another event happening or not





        

P(A) = P(A ∩ B) + P(A ∩ B)

= P(A |B)P(B) + P(A |B)P(B)
A

B

A ∩ BA ∩ B



Conditional Probability
• We can expand Bayes by calculating  as 

probabilities conditioned on 


 





P(B)
A

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

=
P(B |A) ⋅ P(A)

P(B ∩ A) + P(B ∩ A)

=
P(B |A) ⋅ P(A)

P(B |A)P(A) + P(B |A)P(A)



Conditional Probability
• Example: Medical Tests


• An HIV test is positive. What is the probability that you 
have HIV?


• Need some data:  The quality of the test


• Type 1 error:  Test is negative, but there is illness


• Type 2 error:  Test is positive, but there is no illness



Conditional Probability
• Abbreviate probabilities


• T : Test is positive


• H : Person infected with HIV


• Interested in . The quality of the test is 
expressed in terms of the opposite conditional 
probability. 


• Type I error probability:   


• Type II error probability: 

P(H |T)

P(T |H)

P(T |H)



Conditional Probability
• We calculate





• Assume test has 5% type I (false positive) error probability 
and 1% type II (false negative) error probability: 








• The probability still depends on the prevalence of HIV in 
the population

P(H |T) =
P(T |H)P(H)

P(T |H)P(H) + P(T |H)P(H)

P(T |H) = 0.95

P(T |H) = 0.99



Conditional Probability



• Example: HIV rate in general population in the US is 
13.3/100000 = 0.000,133


• After a positive test:


• 0.000138599  (Almost no change!)


• Example 2: HIV in a high risk group in the US is 
1,753.1/100000 = 0.017531


• After a positive test:


• 0.0182557

P(H |T ) =
0.99P(H)

0.99P(H) + 0.95(1 − P(H))



Conditional Probability
• The type I and type II error rates are just too bad to use 

this.



Classification with Bayes
• Bayes' theorem inverts conditional probabilities


• Can use this for classification based on observations


• Idea:  Assume we have observations 


• We have calculated the probabilities of seeing these 
observations given a certain classification


• I.e.: for each category, we know 


• Probability to observe  assuming that point lies in 


• We use Bayes formula in order to calculate 


• And then select the category with highest probability

⃗x

P( ⃗x , ci)

⃗x ci

P(ci, ⃗x )



Classification with Bayes
• Document classification:


• Spam detection: 


• Is email spam or ham?


• Sentiment analysis:


• Is a review good or bad



Classification with Bayes
• Bag of words method:


• Model a document by only counting words


• Restrict ourselves to non-structure = non-common 
words

"I love this movie! It's sweet, but with satirical humor. The dialogs are great and the adventure scenes are fun. It 
manages to be romantic and whimsical while laughing at the conventions of the fairy tale genre. I would 
recommend it to just about anyone. I have seen it several times and I'm always happy to see it again"

fun          1 
great        2 
happy        1 
humor        1 
love         1 
recommend    1 
satirical    1 
sweet        1



Classification with Bayes
• There is a whole theory about recognizing key-words 

automatically


• Easy out:  


• Use all words that are not common



Classification with Bayes
• Recognizing words


• Actual documents have misspelling and grammatical 
forms


• Grammatical forms less common in English but 
typical in other languages


• Lemmatization: Recognize the form of the word


•  


•  


• Usually difficult to automatize

जाओ, जाओगे, …  —> जाना

went, goes —> to go



Classification with Bayes
• Recognizing words


• Stemming


• Several methods to automatically extract the stem


• English: Porter stemmer (1980)


• Other languages: Can use similar ideas


• https://www.emerald.com/insight/content/doi/
10.1108/00330330610681295/full/pdf?title=the-
porter-stemming-algorithm-then-and-now



Classification with Bayes
• Need to calculate the probability to observe a set of 

keywords given a classification


• This is too specific:


• There are too many sets of keywords


• First reduction: 


• Only use existence of words.



Classification with Bayes
• Want:  


• The probability to find a certain word in documents of a 
certain category depends on the existence of other 
words.


• E.g.: "Malicious Compliance"


• We make now a big assumptions:


• The probabilities of a keyword showing up are 
independent of each other


• That's why this method is called "Naïve Bayes"

P(w1, w2, w3, …, wn |ci)



Classification with Naïve 
Bayes

• Want: 





• Can estimate this from a training set:


• E.g. a set of movie reviews classified with the sentiment


• Algorithm: 

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)

for document in set: 
   sentiment = document.sentiment 
   for word in document: 
      count[word]+=1 
      if sentiment=='positive': 
          countPos[word]+=1 
      else: 
          countNeg[word]+=1 
   return countPos/count, countNeg/count 



Classification with Naïve 
Bayes

• This algorithm has a problem:


• It can return a probability as zero


• Because we use multiplication in our estimator:





• Would create zero probabilities


• Solution: start all counts at 1


• No more zero probabilities

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)



Classification with Naïve 
Bayes

• Result: Simple classifier



Classification with Naïve 
Bayes

• Example: Use NLTK, a natural language processor


• NLTK has several corpus (which you might have to 
download separately)

import nltk 
from nltk.corpus import movie_reviews 
import random



Classification with Naïve 
Bayes

• First step: Get the documents

documents = [(list(movie_reviews.words(fileid)), category) 
              for category in movie_reviews.categories() 
              for fileid in movie_reviews.fileids(category)] 
random.shuffle(documents) 
train_set, test_set = featuresets[500:], featuresets[:500]



Classification with Naïve 
Bayes

• Second step:  Get all "features" (important words)


• Strategy:  Get a list of all words, then order it, then select 
the frequent ones with exception of the most frequent 
ones. 


• Here is all_words:

• FreqDist({',': 77717, 'the': 76529, '.': 65876, 'a': 38106, 

'and': 35576, 'of': 34123, 'to': 31937, "'": 30585, 'is': 
25195, 'in': 21822, …}) 

• Therefore, just drop the first ones.  

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words()) 
word_features = list(all_words)[200:2000] 



Classification with Naïve 
Bayes

• Create a bag of words for each document

def document_features(document): 
    document_words = set(document) 
    features = {} 
    for word in word_features: 
        features['contains({})'.format(word)] = (word in 
document_words) 
    return features 

featuresets = [(document_features(d), c) for (d,c) in documents] 
train_set, test_set = featuresets[500:], featuresets[:500]



Classification with Naïve 
Bayes

• Use NLTK Naive Bayes Classifier

classifier = nltk.NaiveBayesClassifier.train(train_set) 

print(nltk.classify.accuracy(classifier, test_set))



Classification with Naïve 
Bayes

• Results:  80.2% sentiments classified correctly


• Can see how the classifier works


• And already can see improvements

>>> classifier.show_most_informative_features(5) 
Most Informative Features 
        contains(seagal) = True              neg : pos    =     11.3 : 1.0 
   contains(outstanding) = True              pos : neg    =      8.6 : 1.0 
        contains(wasted) = True              neg : pos    =      7.3 : 1.0 
         contains(mulan) = True              pos : neg    =      7.2 : 1.0 
   contains(wonderfully) = True              pos : neg    =      6.3 : 1.0 



Classification with Gaussian 
Bayes

• Continuous features


• Assumption: Features are 
distributed normally


• Example:  Look again at Iris 
set


• All features are look 
normally distributed



Classification with Gaussian 
Naïve Bayes

• Possibility one: Disregard correlation —> Naïve


• For each feature:


• Calculate sample mean  and sample standard 
deviation 


• Use these as estimators of the population mean and 
deviation


• For a given feature value x, calculate the probability 
density assuming that  is in a category 


•

μ
σ

x c

P(x |c) ∼ 𝒩(μc, σc)



Classification with Gaussian 
Naïve Bayes

• Estimate the probability for observation  as 
the product of the densities





• Then use Bayes formula to invert the conditional 
probabilities


• This means estimating the prevalence of the categories


•

(x1, x2, …, xn)

P((x1, …, xn) |cj) ∼ 𝒩(x1, σ1,cj
, μ1,cj

) ⋅ … ⋅ 𝒩(x1, σn,cj
, μ1,cj

)

P(cj | (x1, …, xn)) =
P((x1, …, xn) |cj)P(cj)

P((x1, …, xn))



Classification with Gaussian 
Naïve Bayes

• The denominator does not depend on the category 


• So, we just leave it out:


• 


• We calculate  


• And select the highest value

cj

P(cj | (x1, …, xn)) ∼ P((x1, …, xn) |cj)P(cj)

P((x1, …, xn) |cj)P(cj)



Classification with Gaussian 
Naïve Bayes

• Implemented in sklearn.naive_bayes


• Example with Iris data-set

from sklearn import datasets 
from sklearn.naive_bayes import GaussianNB 

iris = datasets.load_iris() 
model = GaussianNB() 
model.fit(iris.data, iris.target) 
print('means', model.theta_) 
print('stds', model.sigma_) 

for x,t, p in zip(iris.data, iris.target, model.predict(iris.data)): 
    print(x, t, p)



Classification with Gaussian 
Naïve Bayes

means [[5.006 3.428 1.462 0.246] 
 [5.936 2.77  4.26  1.326] 
 [6.588 2.974 5.552 2.026]] 
stds [[0.121764 0.140816 0.029556 0.010884] 
 [0.261104 0.0965   0.2164   0.038324] 
 [0.396256 0.101924 0.298496 0.073924]] 
[5.1 3.5 1.4 0.2] 0 
[4.9 3.  1.4 0.2] 0 
[4.7 3.2 1.3 0.2] 0 
[4.6 3.1 1.5 0.2] 0 
[5.  3.6 1.4 0.2] 0 
[5.4 3.9 1.7 0.4] 0



Classification with Gaussian 
Naïve Bayes

• There are a few errors:


• Caution: We did not divide the data set into a training and 
verification set.

[6.9 3.1 4.9 1.5] 1 2 
[5.9 3.2 4.8 1.8] 1 2 
[6.7 3.  5.  1.7] 1 2 
[4.9 2.5 4.5 1.7] 2 1 
[6.  2.2 5.  1.5] 2 1 
[6.3 2.8 5.1 1.5] 2 1



Classification with  
Not-So-Naïve Gaussian Bayes
• We did not use correlation between features


• If we do, use the multi-variate probability density


• Need to estimate correlation coefficients:


• Then use the multi-variate normal probability density 

normμ,Σ(x) =
1

( 2π)d |Σ |
exp (−

(x − μ)TΣ−1(x − μ)
2 )

σk,l =
1

|Cj | ∑
x∈Cj

(xk − μk)(xl − μl)



Classification with  
Not-So-Naïve Gaussian Bayes
• Luckily, implemented in scipy.stats


• Estimate means and correlations


• Similarly to before, estimate category by looking at the 
multi-variate normal density for each category and 
updating 

from scipy.stats import multivariate_normal

def diagnose(tupla): 
    return np.argmax( 
   [multivariate_normal.pdf(tupla,mean=Gl.mu_setosa, cov=Gl.sigma_setosa), 
    multivariate_normal.pdf(tupla,mean=Gl.mu_ver, cov=Gl.sigma_ver),  
    multivariate_normal.pdf(tupla,mean=Gl.mu_vgc, cov=Gl.sigma_vgc)])



Classification with  
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications


• Example:


• Virginica features:


• Versicolor and virginica probs are similar

>>> get_probs((6.3, 2.8, 5.1, 1.5)) 
setosa 6.551299963143457e-116 
versicolor 0.3895029363227387 
virginica 0.25720254045708846



Classification with  
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications


• Example:


• Versicolor features:


• Versicolor and virginica probs are somewhat 
similar

>>> get_probs((6.0, 2.7, 5.1, 1.6)) 
setosa 3.4601607892612445e-119 
versicolor 0.09776449471242309 
virginica 0.56568607797792


