
Thomas Schwarz

Naive Bayes
and

Gaussian Bayesian Inference

Conditional Probability
• Given two events and , we define the conditional

probability as

"probability of A given B"

• Write also as:

A B

P(A |B) =
P(A ∩ B

P(B)

P(A ∩ B) = P(A |B)P(B)

Conditional Probability
• Bayes' Theorem: An observation of extreme importance

• Giving rise to a new way of statistics

Theorem:

• Expresses a probability conditioned on B in one
conditioned on A

• Proof:

• Now solve for

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

P(A |B)P(B) = P(A ∩ B) = P(B ∩ A) = P(B |A)P(A)

P(A |B)

Conditional Probability
• We can express a probability for one event in terms of

another event happening or not

P(A) = P(A ∩ B) + P(A ∩ B)

= P(A |B)P(B) + P(A |B)P(B)
A

B

A ∩ BA ∩ B

Conditional Probability
• We can expand Bayes by calculating as

probabilities conditioned on

P(B)
A

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

=
P(B |A) ⋅ P(A)

P(B ∩ A) + P(B ∩ A)

=
P(B |A) ⋅ P(A)

P(B |A)P(A) + P(B |A)P(A)

Conditional Probability
• Example: Medical Tests

• An HIV test is positive. What is the probability that you
have HIV?

• Need some data: The quality of the test

• Type 1 error: Test is negative, but there is illness

• Type 2 error: Test is positive, but there is no illness

Conditional Probability
• Abbreviate probabilities

• T : Test is positive

• H : Person infected with HIV

• Interested in . The quality of the test is
expressed in terms of the opposite conditional
probability.

• Type I error probability:

• Type II error probability:

P(H |T)

P(T |H)

P(T |H)

Conditional Probability
• We calculate

• Assume test has 5% type I (false positive) error probability
and 1% type II (false negative) error probability:

• The probability still depends on the prevalence of HIV in
the population

P(H |T) =
P(T |H)P(H)

P(T |H)P(H) + P(T |H)P(H)

P(T |H) = 0.95

P(T |H) = 0.99

Conditional Probability

• Example: HIV rate in general population in the US is
13.3/100000 = 0.000,133

• After a positive test:

• 0.000138599 (Almost no change!)

• Example 2: HIV in a high risk group in the US is
1,753.1/100000 = 0.017531

• After a positive test:

• 0.0182557

P(H |T) =
0.99P(H)

0.99P(H) + 0.95(1 − P(H))

Conditional Probability
• The type I and type II error rates are just too bad to use

this.

Classification with Bayes
• Bayes' theorem inverts conditional probabilities

• Can use this for classification based on observations

• Idea: Assume we have observations

• We have calculated the probabilities of seeing these
observations given a certain classification

• I.e.: for each category, we know

• Probability to observe assuming that point lies in

• We use Bayes formula in order to calculate

• And then select the category with highest probability

⃗x

P(⃗x , ci)

⃗x ci

P(ci, ⃗x)

Classification with Bayes
• Document classification:

• Spam detection:

• Is email spam or ham?

• Sentiment analysis:

• Is a review good or bad

Classification with Bayes
• Bag of words method:

• Model a document by only counting words

• Restrict ourselves to non-structure = non-common
words

"I love this movie! It's sweet, but with satirical humor. The dialogs are great and the adventure scenes are fun. It
manages to be romantic and whimsical while laughing at the conventions of the fairy tale genre. I would
recommend it to just about anyone. I have seen it several times and I'm always happy to see it again"

fun 1
great 2
happy 1
humor 1
love 1
recommend 1
satirical 1
sweet 1

Classification with Bayes
• There is a whole theory about recognizing key-words

automatically

• Easy out:

• Use all words that are not common

Classification with Bayes
• Recognizing words

• Actual documents have misspelling and grammatical
forms

• Grammatical forms less common in English but
typical in other languages

• Lemmatization: Recognize the form of the word

•

•

• Usually difficult to automatize

जाओ, जाओगे, … —> जाना

went, goes —> to go

Classification with Bayes
• Recognizing words

• Stemming

• Several methods to automatically extract the stem

• English: Porter stemmer (1980)

• Other languages: Can use similar ideas

• https://www.emerald.com/insight/content/doi/
10.1108/00330330610681295/full/pdf?title=the-
porter-stemming-algorithm-then-and-now

Classification with Bayes
• Need to calculate the probability to observe a set of

keywords given a classification

• This is too specific:

• There are too many sets of keywords

• First reduction:

• Only use existence of words.

Classification with Bayes
• Want:

• The probability to find a certain word in documents of a
certain category depends on the existence of other
words.

• E.g.: "Malicious Compliance"

• We make now a big assumptions:

• The probabilities of a keyword showing up are
independent of each other

• That's why this method is called "Naïve Bayes"

P(w1, w2, w3, …, wn |ci)

Classification with Naïve
Bayes

• Want:

• Can estimate this from a training set:

• E.g. a set of movie reviews classified with the sentiment

• Algorithm:

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)

for document in set:
 sentiment = document.sentiment
 for word in document:
 count[word]+=1
 if sentiment=='positive':
 countPos[word]+=1
 else:
 countNeg[word]+=1
 return countPos/count, countNeg/count

Classification with Naïve
Bayes

• This algorithm has a problem:

• It can return a probability as zero

• Because we use multiplication in our estimator:

• Would create zero probabilities

• Solution: start all counts at 1

• No more zero probabilities

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)

Classification with Naïve
Bayes

• Result: Simple classifier

Classification with Naïve
Bayes

• Example: Use NLTK, a natural language processor

• NLTK has several corpus (which you might have to
download separately)

import nltk
from nltk.corpus import movie_reviews
import random

Classification with Naïve
Bayes

• First step: Get the documents

documents = [(list(movie_reviews.words(fileid)), category)
 for category in movie_reviews.categories()
 for fileid in movie_reviews.fileids(category)]
random.shuffle(documents)
train_set, test_set = featuresets[500:], featuresets[:500]

Classification with Naïve
Bayes

• Second step: Get all "features" (important words)

• Strategy: Get a list of all words, then order it, then select
the frequent ones with exception of the most frequent
ones.

• Here is all_words:

• FreqDist({',': 77717, 'the': 76529, '.': 65876, 'a': 38106,

'and': 35576, 'of': 34123, 'to': 31937, "'": 30585, 'is':
25195, 'in': 21822, …})

• Therefore, just drop the first ones.

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = list(all_words)[200:2000]

Classification with Naïve
Bayes

• Create a bag of words for each document

def document_features(document):
 document_words = set(document)
 features = {}
 for word in word_features:
 features['contains({})'.format(word)] = (word in
document_words)
 return features

featuresets = [(document_features(d), c) for (d,c) in documents]
train_set, test_set = featuresets[500:], featuresets[:500]

Classification with Naïve
Bayes

• Use NLTK Naive Bayes Classifier

classifier = nltk.NaiveBayesClassifier.train(train_set)

print(nltk.classify.accuracy(classifier, test_set))

Classification with Naïve
Bayes

• Results: 80.2% sentiments classified correctly

• Can see how the classifier works

• And already can see improvements

>>> classifier.show_most_informative_features(5)
Most Informative Features
 contains(seagal) = True neg : pos = 11.3 : 1.0
 contains(outstanding) = True pos : neg = 8.6 : 1.0
 contains(wasted) = True neg : pos = 7.3 : 1.0
 contains(mulan) = True pos : neg = 7.2 : 1.0
 contains(wonderfully) = True pos : neg = 6.3 : 1.0

Classification with Gaussian
Bayes

• Continuous features

• Assumption: Features are
distributed normally

• Example: Look again at Iris
set

• All features are look
normally distributed

Classification with Gaussian
Naïve Bayes

• Possibility one: Disregard correlation —> Naïve

• For each feature:

• Calculate sample mean and sample standard
deviation

• Use these as estimators of the population mean and
deviation

• For a given feature value x, calculate the probability
density assuming that is in a category

•

μ
σ

x c

P(x |c) ∼ 𝒩(μc, σc)

Classification with Gaussian
Naïve Bayes

• Estimate the probability for observation as
the product of the densities

• Then use Bayes formula to invert the conditional
probabilities

• This means estimating the prevalence of the categories

•

(x1, x2, …, xn)

P((x1, …, xn) |cj) ∼ 𝒩(x1, σ1,cj
, μ1,cj

) ⋅ … ⋅ 𝒩(x1, σn,cj
, μ1,cj

)

P(cj | (x1, …, xn)) =
P((x1, …, xn) |cj)P(cj)

P((x1, …, xn))

Classification with Gaussian
Naïve Bayes

• The denominator does not depend on the category

• So, we just leave it out:

•

• We calculate

• And select the highest value

cj

P(cj | (x1, …, xn)) ∼ P((x1, …, xn) |cj)P(cj)

P((x1, …, xn) |cj)P(cj)

Classification with Gaussian
Naïve Bayes

• Implemented in sklearn.naive_bayes

• Example with Iris data-set

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB

iris = datasets.load_iris()
model = GaussianNB()
model.fit(iris.data, iris.target)
print('means', model.theta_)
print('stds', model.sigma_)

for x,t, p in zip(iris.data, iris.target, model.predict(iris.data)):
 print(x, t, p)

Classification with Gaussian
Naïve Bayes

means [[5.006 3.428 1.462 0.246]
 [5.936 2.77 4.26 1.326]
 [6.588 2.974 5.552 2.026]]
stds [[0.121764 0.140816 0.029556 0.010884]
 [0.261104 0.0965 0.2164 0.038324]
 [0.396256 0.101924 0.298496 0.073924]]
[5.1 3.5 1.4 0.2] 0
[4.9 3. 1.4 0.2] 0
[4.7 3.2 1.3 0.2] 0
[4.6 3.1 1.5 0.2] 0
[5. 3.6 1.4 0.2] 0
[5.4 3.9 1.7 0.4] 0

Classification with Gaussian
Naïve Bayes

• There are a few errors:

• Caution: We did not divide the data set into a training and
verification set.

[6.9 3.1 4.9 1.5] 1 2
[5.9 3.2 4.8 1.8] 1 2
[6.7 3. 5. 1.7] 1 2
[4.9 2.5 4.5 1.7] 2 1
[6. 2.2 5. 1.5] 2 1
[6.3 2.8 5.1 1.5] 2 1

Classification with
Not-So-Naïve Gaussian Bayes
• We did not use correlation between features

• If we do, use the multi-variate probability density

• Need to estimate correlation coefficients:

• Then use the multi-variate normal probability density

normμ,Σ(x) =
1

(2π)d |Σ |
exp (−

(x − μ)TΣ−1(x − μ)
2)

σk,l =
1

|Cj | ∑
x∈Cj

(xk − μk)(xl − μl)

Classification with
Not-So-Naïve Gaussian Bayes
• Luckily, implemented in scipy.stats

• Estimate means and correlations

• Similarly to before, estimate category by looking at the
multi-variate normal density for each category and
updating

from scipy.stats import multivariate_normal

def diagnose(tupla):
 return np.argmax(
 [multivariate_normal.pdf(tupla,mean=Gl.mu_setosa, cov=Gl.sigma_setosa),
 multivariate_normal.pdf(tupla,mean=Gl.mu_ver, cov=Gl.sigma_ver),
 multivariate_normal.pdf(tupla,mean=Gl.mu_vgc, cov=Gl.sigma_vgc)])

Classification with
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications

• Example:

• Virginica features:

• Versicolor and virginica probs are similar

>>> get_probs((6.3, 2.8, 5.1, 1.5))
setosa 6.551299963143457e-116
versicolor 0.3895029363227387
virginica 0.25720254045708846

Classification with
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications

• Example:

• Versicolor features:

• Versicolor and virginica probs are somewhat
similar

>>> get_probs((6.0, 2.7, 5.1, 1.6))
setosa 3.4601607892612445e-119
versicolor 0.09776449471242309
virginica 0.56568607797792

