
Classes
Thomas Schwarz, SJ

Address Class
• How to generate addresses

• Each country has its own way of generating addresses

• An address consists of

• an optional modifier (apartment, floor, neighborhood)

• a street

• a street number

• a city

• a state (in most of the Americas)

• a country

Address Class
• To deal with optional arguments:

• Use a default argument of none

def __init__(self, country, city, street, number,
 postal, state, apartment = None):

Aside: How to deal with
long lines in Python

• Python statements ideally fit in a single line

• In fact, if you want to write poorly readable code, you can
put more than one statement in a line and separate with a
semi-colon (;)

• Python still allows to use a single forward slash as a
continuation marker

• But this is not very readable

• Put expressions into parentheses (unless they already
come with parentheses)

• Python interpreter will interpret correctly

The purpose of str and repr
• The dunder methods __str__ and __repr__ seem to do the

same thing,

• But:

• __str__ is called by print with priority over __repr__

• This is how you want your output be displayed

• __repr__ should represent the internal structure of
your class instances

Addresses
• We can use __repr__ to just give us the internal makeup

of an Address instance
 def __repr__(self):
 return "apartment: {0}\nstreet: {1}\nnumber: {2}\ncity: {3}\npostal: {4}\nstate: {5}, \ncountry: {6}".format(
 self.apartment, self.street, self.number, self.city, self.postal, self.state, self.country)

Addresses
• But for __str__, we will let the country code determine

what to do.

• The code is ugly, but that is the price for
internationalization

• And we have not even discussed how to be able to use
non-English keyboard letters in Python

Self Test
• Open up the file address.py

• Edit the __str__ dunder method to allow for Indian
addresses

Addresses
• When we use str(my_address) on an Address object, we

get the result of __str__

• When we use repr(my_address), we get the result of
__repr__

Instances can be fields of
classes

• When we model processes (such as business processes),
we will build up our entities from simpler entities

• We can have a has-a relationship

• For example, each person has an address

• (With many sad exceptions: some have none, some
have more than one)

Modular programming
• Remember modules:

• They are just py-files

• They are imported using import statements

• The form of the import statements determines how the names are
being resolved

• import address

• imports the module, names are prefixed with “address.”

• from address import *

• Not recommended, just use names without prefix

• from address import Address

• Just as before, but only imports the class Address

Client Example
• Clients have a name and an address

import address

class Client:
 def __init__(self, name, address):
 self.name = name
 self.address = address
 def __str__(self):
 return "{}\n{}".format(self.name, str(self.address))
 def __repr__(self):
 return "Name: {}\n {}".format(self.name, repr(self.address))

if __name__=="__main__":
 address4 = address.Address("Canada", "Ottawa", "Wellington Street",
 80, "ON K1A 0A2", "Ontario",
 "Office of the Prime Minister")
 trudy = Client("The Honorable Justin Trudeau", address4)
 print(trudy)

Doc Strings
• Classes are reusable

• No need to reinvent a working name class

• But need to provide documentation

• In Python:

• This is done primarily with the so-called doc string

• Right after the definition of a class or function

• Included between triple quotes

Doc Strings
• The contents are made available to the help function

Example
• A simple checking account class

class Checking_Account:
 """A class that models a checking account.
 Attributes: a name -- string in this implementation
 Balance: a balance in cents
 """
 def __init__(self, name, balance):
 """Constructor. name is a string. balance is a floating point or integer."""
 self.name = name
 self.balance = round(balance*100)
 def __str__(self):
 """Returns balance as dollars and cents"""
 return "Account for {} with balance US${:d}.{:02d}".format(
 self.name,
 self.balance//100,
 self.balance%100)
 def transfer(act1, act2, amount):
 """transfers amount (floating pt) in dollars from act1 to act2"""
 amount = round(amount*100)
 act1.balance -= amount
 act2.balance += amount

Example
if __name__ == "__main__":
 a1 = Checking_Account("Thomas Schwarz", 1543.285)
 a2 = Checking_Account("Joseph Cuelho", 1009)
 print(a1)
 print(a2)
 print("Transferring")
 Checking_Account.transfer(a1, a2, 500.01)
 print(a1)
 print(a2)

Example
• This is the result of typing help(Checking_Account)

Example
• As you can see, Python has automatically created a help

file from the information you provided.

Tricks with Currency
Amounts

• Currency is usually a decimal number with exactly two
digits precision.

• Could use the decimal - class

• Could use third party classes

• We build our own

• Idea: Present currency as multiples of cents.

class Checking_Account:
 """A class that models a checking account.
 Attributes: a name -- string in this implementation
 Balance: a balance in cents
 """
 def __init__(self, name, balance):
 """Constructor. name is a string. balance is a
 floating point or integer.
 “""
 self.name = name
 self.balance = round(balance*100)

Tricks with Currency
Accounts

• To print out currencies, we break the cents apart into the
dollars (displayed normally) and the cents amount proper.

• The format mini-language allow us to print out amounts
with leading 0.

• Just stick a 0 in front of the width field

 def __str__(self):
 """Returns balance as dollars and cents"""
 return "Account for {} with balance US${:d}.{:02d}".format(
 self.name,
 self.balance//100,
 self.balance%100)

Specify leading zero in the
format mini-language

Self Test
• Modify the __str__ function so that a negative amount is

written in the form

• -US$103.05

Solution
• Just make a case distinction, but make sure that you do

not change the field
 def __str__(self):
 """Returns balance as dollars and cents"""
 if self.balance >= 0:
 return "Account for {} with balance US${:d}.{:02d}".format(
 self.name,
 self.balance//100,
 self.balance%100)
 else:
 balance = -self.balance
 return "Account for {} with balance -US${:d}.{:02d}".format(
 self.name,
 balance//100,
 balance%100)

K Nearest Neighbor
• A simple classification system

• Classify an unknown category by looking at the k
nearest neighbors

K Nearest Neighbor
• How do we define near-ness

• One possibility: Euclidean distance

• Data points with numerical values and
:

x1, x2, …, xn
y1, y2, …, yn

(x1 − y1)2 + (x2 − y2)2 + … + (xn − yn)2

k Nearest Neighbor
• Usually need to normalize values

• Otherwise dimension will matter

• (100000, 1) and (1000010, 5) are almost equally
distant from (0,6)

• Normalize:

• Now all coordinates are between 0 and 1

x ↦
x − min

max − min

k Nearest Neighbor
• Other distances are possible

• Angle between the two points

• Weighted euclidean distance

• Manhattan distance

• …

arccos(
x ⋅ y

|x | |y |
)

k Nearest Neighbor
• Parameter k has an influence on accuracy:

• Choose odd k to deal with ties when we have only two
categories

knn Implementation
• Want to do something more generic

• Assume a csv file:

• First column might be an index

• Then observable values

• Finally category

• Want to normalize:

• Need to find maximum and minimum for each coordinate

• This goes into class variables

knn Implementation
• Create a class for data: Cat_Data

class Cat_Data():
 nr_cols = 0
 mins = []
 maxs = []

knn Implementation
• Whenever an object is created, we update the three class

variables

def __init__(self, data, cat):
 self.values = data
 self.cat = cat
 if len(self.values) > Cat_Data.nr_cols:
 Cat_Data.mins.extend(data[Cat_Data.nr_cols:])
 Cat_Data.maxs.extend(data[Cat_Data.nr_cols:])
 Cat_Data.nr_cols = len(self.values)
 for i, val in enumerate(self.values):
 if val < Cat_Data.mins[i]:
 Cat_Data.mins[i] = val
 if val > Cat_Data.maxs[i]:
 Cat_Data.maxs[i] = val

knn Implementation
• Need to create string dunder

def __str__(self):
 retVal = []
 for val in self.values:
 retVal.append(str(val))
 retVal.append('cat: ' + str(self.cat))
 return ', '.join(retVal)

knn Implementation
• The repr dunder is mainly the same

def __repr__(self):
 retVal = ['Cat_Data']
 for val in self.values:
 retVal.append(str(val))
 retVal.append('cat: ' + str(self.cat))
 return ', '.join(retVal)

knn Implementation
• Create a class method 'load'

• Takes file name and as optional parameter, whether the
first column is an index column

def load(file_name, index = True):
 lista = []
 with open(file_name) as infile:
 infile.readline() # remove first line
 for line in infile:
 contents = line.strip().split(',')
 data = []
 if index:
 contents = contents[1:]
 for val in contents[:-1]:
 data.append(float(val))
 cat = contents[-1]
 lista.append(Cat_Data(data, cat))
 return lista

knn Implementation
• To normalize, need to know the value and the coordinate

def normalize(val, i):
 return (val-Cat_Data.mins[i])/(Cat_Data.maxs[i]-
Cat_Data.mins[i])

knn Implementation
• Distance between points is the Euclidean distance

between normalized data points

def distance(self, other):
 yog = 0
 for i in range(min(len(self.values),
len(other.values))):
 yog += (Cat_Data.normalize(self.values[i], i)-
Cat_Data.normalize(other.values[i], i))**2
 return math.sqrt(yog)

knn Implementation
• Now can write a classifier

• Needs to find the nearest k elements

• We can speed this up by limiting the number of
elements that we need to look at

• E.g. using a kd-tree

• But here, we just order all data points by their
distance

• Use Counter and sort with a key function

knn Implementation

def classify(element, lista, k=5):
 distances = [(el, element.distance(el)) for el in lista]
 distances.sort(key = lambda x: x[1])
 votes = Counter([x[0].cat for x in distances[:k]])
 return votes.most_common(1)[0][0]

