
Classes 3
Thomas Schwarz, SJ

Classes through Special
Methods

• Python:

• Many mechanisms use specialized (= dunder) methods

Classes through Special
Methods

• Example: Playing cards (again)

class Card:
 def __init__(self, suite, rank):
 self.suite = suite
 self.rank = rank
 def __str__(self):
 return "({:2s},{:2s})".format(
 self.suite[:2],
 self.rank[:2])
 def __retr__(self):
 return '[Card' + str(self)+']'

Classes through Special
Methods

• Can find all attributes of an instance defined using
__dict__ or dir :

>>> c=Card('heart', 'king')
>>> c.__dict__
{'suite': 'heart', 'rank': 'king'}

>>> dir(c)
['__class__', '__delattr__', '__dict__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__retr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'rank',
'suite']

Classes through Special
Methods

• Equality versus Identity

• Default evaluation for == looks at location of storage

• Can get storage location with object.__repr__()

• Or in most Python implementation, with id

>>> id(d)
140299613922544
>>> object.__repr__(d)
'<__main__.Card object at 0x7f9a0ca664f0>'
>>> hex(id(d))
'0x7f9a0ca664f0'

Classes through Special
Methods

• Equality versus Identity

• This is usually not the behavior we want

• Equality means all attributes are equal

• Need to define __eq__ in your class
class Card:
 def __eq__(self, other):
 return self.suite==other.suite and self.rank==other.rank

>>> d=Card('heart', 'king')
>>> c=Card('heart', 'king')
>>> d==c
True

Classes through Special
Methods

• Equality versus Identity

• We can still compare for identity with is

>>> d is c
False

Classes through Special
Methods

‘You are sad,’ the Knight said in an anxious tone: ‘let me sing you a song to comfort you.’
‘Is it very long?’ Alice asked, for she had heard a good deal of poetry that day.
‘It’s long,’ said the Knight, ‘but very, very beautiful. Everybody that hears me sing it—either
it brings the tears into their eyes, or else—’
‘Or else what?’ said Alice, for the Knight had made a sudden pause.
‘Or else it doesn’t, you know. The name of the song is called “Haddocks’ Eyes.”’
‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel interested.
‘No, you don’t understand,’ the Knight said, looking a little vexed. ‘That’s what the name is
called. The name really is “The Aged Aged Man.”’
‘Then I ought to have said “That’s what the song is called”?’ Alice corrected herself.
‘No, you oughtn’t: that’s quite another thing! The song is called “Ways and Means”: but that’s
only what it’s called, you know!’
‘Well, what is the song, then?’ said Alice, who was by this time completely bewildered.
‘I was coming to that,’ the Knight said. ‘The song really is “A-sitting On A Gate”: and the
tune’s my own invention.’

Classes through Special
Methods

• We cannot make cards into elements of sets without
making them hashable

•

>>> seta = {c}
Traceback (most recent call last):
 File "<pyshell#36>", line 1, in <module>
 seta = {c}
TypeError: unhashable type: 'Card'

Classes through Special
Methods

• Need to declare a method __hash__ and a method __eq__

•

• Now it works

class Card:
 def __hash__(self):
 return hash(self.suite)*hash(self.rank)

>>> c = Card('heart', 'king')
>>> seta = {c}
>>> c in seta
True

Classes through Special
Methods

• But to do this, we should make cards immutable

• Right now, we can just say

• Strategy: declare the components private

• Create a getter function

• Which we do by using a property generator

c.rank = 'ace'

Classes through Special
Methods

• Implementation
class Card:
 def __init__(self, suite, rank):
 self._suite = suite
 self._rank = rank
 @property
 def suite(self):
 return self._suite
 @property
 def rank(self):
 return self._rank

private
attributes

Classes through Special
Methods

• Implementation
class Card:
 def __init__(self, suite, rank):
 self._suite = suite
 self._rank = rank
 @property
 def suite(self):
 return self._suite
 @property
 def rank(self):
 return self._rank

made to behave
like attributes

Classes through Special
Methods

"Perl does not have an infatuation with enforced privacy.
It would prefer that you stayed out of its living room
because you weren't invited, not because it has a shot-
gun."

 - -Larry Wall, Creator of Perl

Classes through Special
Methods

• Containers:

• Example: a deck of cards

class Deck:
 def __init__(self, suites, ranks):
 self.cards = [Card(s,r) for s in suites for r in ranks]
 def __str__(self):
 retVal = []
 for card in self.cards:
 retVal.append(str(card))
 return '\n'.join(retVal)

Classes through Special
Methods

• We want:

• Sequences: length and []

• Slicing

•

Classes through Special
Methods

• Implementing sequencing

• Define __len__ and __getitem__

class Deck:
 def __len__(self):
 return len(self.cards)
 def __getitem__(self, i):
 return self.cards[i]

Classes through Special
Methods

• Now we can do the following:

• Get an element

• Randomly select

• Use slices

>>> import random
>>> deck = Deck(suites, rank)
>>> random.choice(deck)
>>> print(deck[5:10])
>>> print(deck[3])

Classes through Special
Methods

• But we cannot shuffle a deck of cards

>>> random.shuffle(deck)
Traceback (most recent call last):
 File "<pyshell#66>", line 1, in <module>
 random.shuffle(deck)
 File "/Library/Frameworks/Python.framework/Versions/3.8/lib/
python3.8/random.py", line 307, in shuffle
 x[i], x[j] = x[j], x[i]
TypeError: 'Deck' object does not support item assignment

Classes through Special
Methods

• We need to implement a __setitem__ method

def __setitem__(self, position, card):
 self.cards[position] = card

Classes through Special
Methods

>>> deck = Deck(suites, ranks)
>>> import random
>>> random.shuffle(deck)
>>> print(deck)
(cl,ki)
(di,ja)
(cl,4)
(he,3)
(cl,9)

Classes through Special
Methods

• We could even use monkey-patching

• Define a function that takes deck, position, and card as
arguments

• Dynamically create a Deck.__setitem__ method

Deck.__setitem__ = setcard

Inheritance
"We started to push on the inheritance idea as a way to
let novices build on frameworks that could only be
assigned by experts"

- -Alan Kay: The Early History of Smalltalk

Inheritance
• To inherit from a class, just add the name of the base

class in parenthesis

class BlackjackCard(Card):

Inheritance
• To initialize a derived class, usually want to call the

initializer of the base class
values = {'ace':11, '2':2, '3':3, '4':4, '5':5, '6':6, '7':7, '8':8,
 '9':9, '10':10, 'jack':10, 'queen':10, 'king':10}

class BlackjackCard(Card):
 def __init__(self, suite, rank):
 super().__init__(suite, rank)
 self.value = values[rank]
 self.softvalue = 1 if rank=='ace' else self.value
 def __str__(self):
 return "{} of {} with value {}({})".format(
 self.rank,
 self.suite,
 self.value,
 self.softvalue
)

Inheritance
• Notice:

• All methods in the base class are still available and
attributes

• But we can also override them

def __hash__(self):
 return super().__hash__()^self.softvalue

Calling base
class function

Inheritance
• Multiple inheritance

• Allowed but tricky

• Diamond Problem

A

ping

B

pong

C

pong

D

pang

class A:
 def ping(self):
 print('ping')

class B:
 def pong(self):
 print('pong')

class C:
 def pong(self):
 print('PONG')

class D(B,C):
 def ping(self):
 super().ping()
 def pang(self):
 super().ping()
 super().pong()

 C.pong(self)

Inheritance
• Method Resolution for d.pong():

• First look in the current class

• Then look into B

• Then look into C

• Then look into A

• Implemented via __mro__, which lists the classes in a
certain order

• Can avoid ambiguity by giving explicit class names in the
invocation

class D(B,C):
 def ping(self):
 super().ping()
 def pang(self):
 super().ping()
 super().pong()

 C.pong(self)

Inheritance
• Multiple inheritance can be used

• Can use inheritance to define an interface:

• A base class that requires that certain methods are
implemented

• Then multiple inheritance is fine

Operator Overloading
• Fundamental Rule:

• Do not overload operators that do not make sense

• E.g. Addition for cards makes no sense

• Addition for complex numbers makes sense

Operator Overloading
• Unary Operations:

• - __neg__

• Negative

• + __pos__

• +x is not always the same as x

• ~ __inv__

• Bitwise inverse of an integer

Operator Overloading
• Binary Operations

• When confronted with an expression

• a ^ b

• Python looks into the class of a for a method
__xor__(self, other)

• If not found, then Python looks into the class of b for a
method __rxor__(self, other)

Operator Overloading
• Binary Operations

• When Python sees a ^= b

• Then Python looks into the class of a for a method
__ixor__(a,b)

• a = ixor(a,b) is equivalent to a^=b

Operator Overloading
• Implementation:

• All methods need to return an object

• Operands do not have to be from the same class

Operator Overloading
class Complex:
 def __init__(self, re, im):
 self.re = re
 self.im = im
 def __str__(self):
 return "({},{})".format(self.re, self.im)
 def __add__(self, other):
 return Complex(self.re+other.re, self.im+other.im)
 def __iadd__(self, other):
 self.re += other.re
 self.im += other.im
 return self
 def __radd__(self, other):
 return self+other

Interfaces
• Interfaces encapsulate how a user can use a certain set

of classes

• Python does not need interfaces and only implemented
them as Abstract Base Classes (ABC) in 3.4

Interfaces
• Example: Sequences

• An interface describes what can be invoked

Sequence

__getitem__
__contains__
__iter__
__reversed__
index
count

Sized

__len__

Iterable

__iter__

Container

__contains__

Interfaces
• Example: Sequences

• Some missing methods can be implemented via other
methods

• in still works even without __contains__ and __iter__

Interfaces
• ABC: Abstract Base Class

• A class that does not have any methods implemented

• If you derive a class from an ABC:

• You have to implement these methods

• You make a public declaration that these methods are
in your class

Interfaces
class FrenchDeck(collections.MutableSequence):
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

 def __setitem__(self, position, value):
 self._cards[position] = value

 def __delitem__(self, position):
 del self._cards[position]

 def insert(self, position, value):
 self._cards.insert(position, value)

Interfaces
• Here we have to implement methods that do not make

sense for a deck of cards because MutableSequence
demands them

• But now we get a whole lot of other methods that are
implemented in terms of these methods

