
Comprehension
Thomas Schwarz, SJ

Contents

• The random module

• Some repetition and new stuff about loops

• List and dictionary comprehension

The random module
Python

Marquette University

A Monte Carlo Method for
Area calculation

• Calculate the area of a circle of radius 1

• Can be done analytically:

• Can be done with Monte Carlo Method

• Use pseudo-random numbers in order to determine
values probabilistically

• Named after Stanislav Ulam

• Used for work on the thermo-nuclear device

A = r2 · ⇡

A Monte Carlo Method for
Area calculation

• Inscribe Circle with a square

• Circle:

• Square:

{(x, y)|x2 + y2 < 1}

{(x, y)|� 1 < x < 1,�1 < y < 1}

A Monte Carlo Method for
Area calculation

• Method:

• Choose n random points in the square

• m points inside circeArea of Circle
Area of Square ⇡ m

n

Random Number
Generation

• Computers are deterministic (one hopes) and using a
deterministic device to generate randomness is not possible

• Modern systems can use physical phenomena

• Geiger counters for radioactive materials

• Atmospheric radio noise

• But for large sets of seemingly random numbers, use
pseudo-random number generators

• Create deterministically based on a seemingly random
seed output that passes statistical tests for
randomness

Random Number
Generation in Python

• Sophisticated methods to generate seemingly random
sequences of numbers

• Part of a module called random

Interlude:
Python Modules

• Anyone can create a python module

• Just a file with extension .py

• In a directory in the Python path, which is set for the
OS

• Or just in the same directory as files that use the
module

• A module contains definitions of variables and functions

• Any python script that imports the module can use
them

Interlude: Python Modules

• Predefined modules

• Python defines many modules

• We already have seen math and os

• To use such a module, say

• import random

• in order to use the functions within random

Interlude: Python Modules

• If I just import the module random, then I can use its
functions by prefixing “random.”

•
Using the function random inside the module random

Interlude: Python Modules

• If I want to avoid writing the module name I can use an
“as” clause that redefines the name of the module within
the script

Using the same function in the same module,
but now after internally renaming the module

Interlude: Python Modules

• By using the “from — import” clause, I can use variables
and functions without repeating the module name

Importing the two functions uniform and randint from
the random module.

Interlude: Python Modules

• I could even import everything from a module

• But this can create havoc if I defined a function with the
same name as a function in the module

A dangerous practice: Importing all
functions from a module

Random Module

• Important functions in the random module

• random.randint(a, b) Selects a random integer
between a and b (boundaries included)

• random.uniform(a, b) Selects a random float between a
and b

• random.random() Selects a random number between
0 and 1

A Monte Carlo Method for
Area calculation

• Method:

• Choose n random points in the square

• m points inside circeArea of Circle
Area of Square ⇡ m

n

A Monte Carlo Method for
Area calculation

• Use random module

• random.uniform(-1,1) generates random number
between -1 and 1

•Generating 20 random numbers:

import random

for i in range(20):
 x = random.uniform(-1,1)
 y = random.uniform(-1,1)
 print("({:6.3f},{:6.3f})".format(x,y))

A Monte Carlo Method for
Area calculation

• We then only count those that are inside the circle

import random

def approx(N):
 count = 0
 for i in range(N):
 x = random.uniform(-1,1)
 y = random.uniform(-1,1)
 if x*x+y*y<1:
 count += 1
 return (4*count/N)

A Monte Carlo Method for
Area Calculations

• Since and the area of the box is 4

• we return

import random

def approx(N):
 count = 0
 for i in range(N):
 x = random.uniform(-1,1)
 y = random.uniform(-1,1)
 if x*x+y*y<1:
 count += 1
 return (4*count/N)

count
N

≈
Area Circle
Area Box

4count
N

A Monte Carlo Method for
Area calculation

• Need few random point to get a general idea

• Need lots to get any good accuracy

• Method of choice used to determine 6-dimensional
integrals for simulation of quantum decay where accuracy
is not as important as speed

A Monte Carlo Method for
Area calculation

• Your task:

• Determine the area between the curves

• Hint: We draw points in the rectangle [-1,1] x [0,1]

• (x,y) lies in the area if

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

y = x2

y = 1� x2

x2 < y < 1� x2

A Monte Carlo Method for
Area calculation

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

import random

N = int(input("Give the number of random points: "))
count = 0
for _ in range(N):
 x = random.uniform(-1,1)
 y = random.uniform(0,1)
 if x*x < y < 1-x*x:
 count += 1
print("The area is approximately", count*2/N)

Select random points in the box [-1,1] x [0,1]

Count the number of times that the point falls in
the area

Multiply the ratio count / #pts by the area of the
box, which is 2

Monte-Carlo Volume
Calculation

• Sometimes, Monte-Carlo is the method of choice

• When there is no need for super-precision

• When the volume is not easily evaluated using analytic
methods.

Volume Calculation

• A partially eaten donut

(1 − x2 + y2)
2

+ z4 < 0.2 and x − y < .9 and x + z < 0.1 and x + y < 1.8

Volume Calculation

• Monte Carlo:

• Select random points in the box -1.5<x<1.5,
-1.5<y<1.5, -1.5<z<1.5.

• Check whether they are inside the donut

• Count over total number is approximately area of donut
over area of box (which is 9).

Volume Calculation

• A partially eaten donut

(1 − x2 + y2)
2

+ z4 < 0.2 and x − y < .9 and x + z < 0.1 and x + y < 1.8
import random
import math

N = int(input("Give the number of random points: "))
count = 0
for _ in range(N):
 x = random.uniform(-1.5,1.5)
 y = random.uniform(-1.5,1.5)
 z = random.uniform(-1.5,1.5)
 if (1-math.sqrt(x**2+y**2))**2+z**4<0.2 and x-y<0.9 and x+z<0.1 and x+y<1.8:
 count += 1
print("The area is approximately", count*27/N)

Additional Exercises

• Find the area of

• Hint: First determine maximum and minimum
values for x and y

-1 0 1 2 3
-1

0

1

2

3

{(x, y)|(x� 2)2 + 3 ⇤ (y � 1)2 < 1}

Loops

Loops
• Python does not use indices in for loops

• animals = ['bird', 'dog', 'cat']

for animal in animals:
 print(f'I have a {animal})

Loops
• If we need indices in Python, we can use enumerate

• enumerate returns an enumerate object which is an
iterator that allows us to use a for loop

• You can even change the "index"

colors = ['blue', 'yellow', 'red', 'green']

for i, color in enumerate(colors):
 print(i, color)

for i, color in enumerate(colors, start = 1):

Loops
• Dictionaries:

• The for loop takes the keys

animals = {'dog' : 3, 'cat' : 5, 'bird' : 1, 'hamster': 2}

for animal in animals:
 print(f'I have {animals[animal]} {animal}(s)')

Loops
• Dictionaries:

• We can avoid the bracket notation using items

• items returns an items object, but that is not important
to us

animals = {'dog' : 3, 'cat' : 5, 'bird' : 1, 'hamster': 2}

for animal, count in animals.items():
 print(f'I have {count} {animal}(s)')

Comprehension
Thomas Schwarz, SJ

Marquette University

Programming Styles

• Styles of Programming

• Imperative Programming:

• Describe in detail how computation proceeds

• Basically, change states of variables

• This is what we practiced up till now

Programming Styles

• Functional Programming

• Define functions

• Specify program behavior by executing nested
functions

• Pure functional programming: No variables that
capture a state

• Advantage: Easier to prove programming correctness

Programming Styles
• Declarative Programming

• Specify what a program should do

• System figures out how to do it.

• Example 1: Prolog (Classic AI programming language)

• Specify rules in Prolog:

• animal(X) :- cat(X) means every cat is an animal

• ?- cat(tom). means that tom is a cat

• You can ask about the world defined by these rules

• ?- animal(X). asks for what things are animals

• Prolog consists of rules and base facts, then on its own finds out
other facts.

Programming Styles

• Declarative Programming:

• Example 2: SQL — Database Language

• Database consists of relations stored in various
tables

• Example:
Marquette_ID First_Name Family_Name Address
123123007 David Roy 1984 31st Street, Milwaukee, WI 54321

97007007 Thomas Schwarz 4821 Wisconsin Ave, Milwaukee, WI 54213

14309873 Joseph Cuelho 9821 12th Avenue, Milwaukee, WI 54321

90874132 Donald Drumpf 321 Pennsylvania Ave, Madison, WI 32451

Programming Styles

• Declarative Programming:

• Example SQL:

• SQL statement describes all combinations of record
pieces

SELECT first_name, family_name FROM
addresses, classes

WHERE classes.name = “COSC1010” and
classes.role = “instructor” and
classes.id = addresses.id

http://classes.id
http://addresses.id

Programming Styles
• Declarative Programming:

• Example SQL:

• SQL statement describes all combinations of record
pieces

• How the database engine performs the query is not
specified

• In fact, for complicated queries, the database will try
out several ways before selecting the actual
algorithms

Programming Styles

• Object-Oriented Programming

• Program defined various objects

• Objects have data and methods

• E.g. Marquette Persons have IDs, names,
addresses, …

• Classes have lists of participants

• We will learn Object-Oriented (OO) programming in this
class

Comprehension

• List comprehension is used in functional programming but
it becomes handy

• We define a list with a for clause within the brackets
that define the list.

• Here are two ways to construct a list consisting of
squares

lista = []
for i in range(100):
 lista.append(i**2)

lista = [i**2 for i in range(100)]

Comprehension
[x**2 for x in range(100)]

output
expression

generator
expression variable list

(or list-like expression)

Self Test

• The following code fragment defines a list of elements

• Use list comprehension in order to generate the same list

• Use the interactive window in IDLE

Self Test

Pause the presentation until you
have solved the problem

Self Test Solution

Comprehension

• List comprehension can add an if-condition

• Result is now all even squares.

[x**2 for x in range(100)]if x%2 == 0

Comprehension

• List comprehension can be quite involved

• Remember that we can check for types of variables

• We use the built-in function isinstance()

• Example: is True

• Application to list comprehension: Squaring the
elements of a list (a_list) that are integers

isinstance(345, int)

Comprehension

• We can nest comprehensions

• A list of all composite numbers between 2 and 100.

• A composite number is a product of two integers i and j
that are larger than 1.

• However, the result contains many repeated numbers

[i*j for i in range(2,51) for j in range(2,101) if i*j < 100]

[4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51,
54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68,
72, 76, 80, 84, 88, 92, 96, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 12, 18, 24, 30, 36, 42,
48, 54, 60, 66, 72, 78, 84, 90, 96, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 16, 24, 32, 40, 48, 56, 64, 72, 80,
88, 96, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 20, 30, 40, 50, 60, 70, 80, 90, 22, 33, 44, 55, 66, 77, 88, 99, 24, 36, 48,
60, 72, 84, 96, 26, 39, 52, 65, 78, 91, 28, 42, 56, 70, 84, 98, 30, 45, 60, 75, 90, 32, 48, 64, 80, 96, 34, 51, 68, 85, 36,
54, 72, 90, 38, 57, 76, 95, 40, 60, 80, 42, 63, 84, 44, 66, 88, 46, 69, 92, 48, 72, 96, 50, 75, 52, 78, 54, 81, 56, 84, 58,
87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98]

Comprehensions

• Luckily, we can use a set instead:

• The difference is just curly brackets instead of rectangular
brackets

• The result is now simpler:

{i*j for i in range(2,51) for j in range(2,51) if i*j < 100}

{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25,
26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44,
45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62,
63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80,
81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96,
98, 99}

Comprehensions
• We can now get all of the prime numbers between 2 and

100 by using this set, using comprehension on top of
comprehension

• This is cool but will not win any price for clarity

• You can make it more comprehensible if you define a set
of composite numbers before using it

{i for i in range(2,100) if i not in
{i*j for i in range(2,51) for j in range(2,51) if i*j < 100}}

Self Test

• Use the previous example to generate a set of all
numbers between 1 and 100 (included) that are not
squares

Self Test Solution

seta = {i for i in range(1,101) if i not in {i*i for i in range(10)}}

Comprehensions

• You can also use comprehension on dictionaries

• Here is how you create a dictionary that associates
integers up to 100*100 to their square root

• {i*i: i for i in range(101)}

Comprehensions

• And here is how you can try to “invert” a dictionary where the
roles of keys and values are swapped

• This one works well, because the values are different for
different keys

• And this one inverts with some arbitrariness

drev = {d[key]:key for key in d}

Self Test

• You are given a function func that takes one integer
argument

• You want to create a memoization dictionary that
associates i for i in range(100) with func(i)

Self Test Answer
mem_func = {i: func(i) for i in range(101)}

func = lambda x: 3*x+4

gives

Map, Filter

Map

• Map allows you to apply a function to all elements of a list

• Example:

• Why the list? map returns an iterator (so that it does not
waste memory on values that are not used)

func = lambda x: x+3
list(map(func, [2,3,4])

Filter
• You filter a list by applying a condition

• The result is the list formed by all elements that satisfy the condition

• You need to have a boolean function, i.e. a function that returns
True or False

• Here is an example of such a function:

• Returns True if x is divisible by 2

• Returns False otherwise

• x%2 is zero if and only if x is even

lambda x: x%2==0

Filter

• The function filter(function, sequence) return an
iterable of all elements in the sequence t that render the
function True.

Comprehension in
Action

Python

Getting the listing of a
directory

• Task: Generate a listing of all files in a directory that end
in “.py”

• Tool: import the os module and use listdir

[filename for filename in os.listdir(directoryname)
 if filename.endswith(".py")]

Creating sub-directories

• Task: We want to create a sub-dictionary of a dictionary
where the keys are restricted by a condition

• Use dictionary comprehension

def evenkeys(dictionary):
 return { i:dictionary[i] for i in dictionary if i%2==0}

Filtering a list

• We want to filter a list using a criterion

1. We can use the filter function

2. We can use list comprehension, which is often simpler

• Example: Only display the positive elements of this large list

Mapping a list

• We want to apply a function to all elements in a list

Zip

Zip
• Often we have related data in a number of lists

• Example: list of student names, list of grades, list of
high school

• [“Frankieboy”, “Violet”, “Kumar”, “Dshenghis”]

• [“D”, “A”, “B”, “C”]

• [“MPS1”, “MH”, “MH”, “MPS59”]

• Zipping will create a zip object that generates the
tuples (“Frankieboy”, “D”, “MPS1”), (“Violet”,“A”,”MH”),
(“Kumar”, “B”, “MH”), (“Dshenghis”,”C”, “MPS59”)

Zip

• We can reach the same effect with list comprehension,
but since we cannot enumerate in parallel through several
iterables, we need to use indices.

Zip

• What happens if you give zip iterables of different length

• E.g. a list of 5, a list of 4 and a list of 3 elements?

• The result is a zip object of length the minimum of the
lengths.

Zip

• Undoing a zip:

• If you make a list alist out of a zip object, you can
break it apart with the zip(*alist) command

Exercises

Exercise
• Use list comprehension:

• Flatten a matrix

• Example: [[1, 2, 3], [4, 5, 6], [7, 8, 9]] —>
[1,2,3,4,5,6,7,8,9]

Solution
• Loop Solution:

• Using extend

• But this cannot be translated

def flatten1(matrix):
 result = []
 for row in matrix:
 result.extend(row)
 return result

Solution
• A loop solution that can be translated

• This is not english, but Python: for row in matrix for item
in row

def flatten2(matrix):
 result = []
 for row in matrix:
 for item in row:
 result.append(item)
 return result

Solution
• Now we can do comprehension with the same order of for

loops

def flatten3(matrix):
 return [item for row in matrix for item in row]

Exercise
• Given a list, subtract its reverse from itself

• [10, 7, 5, 4, 2, 1] —> [10-1, 7-2, 5-4, 4-5, 2-7, 1-10]

Solution
• Loop version:

• Use a slice to get the reverse of the list

def clw(lista):
 result = []
 for first, second in zip(lista, lista[::-1]):
 result.append(first-second)
 return result

Solution
• Translated into comprehension

def clwc(lista):
 return [first - sec for first, sec in zip(lista, lista[::-1])]

Exercise
• Given a matrix, calculate its negative

[[1,2,4],
 [2,5,8],
 [3,3,3],
 [5,4,2]
]

Solution
• A double loop

def neg1(matrix):
 result = []
 for row in matrix:
 new_row = []
 for item in row:
 new_row.append(-item)
 result.append(new_row)
 return result

Solution
• A single loop with one interior comprehension

def neg2(matrix):
 result = []
 for row in matrix:
 result.append([-item for item in row])
 return result

Solution
• A double comprehension (which shows that you might not

want to overdo comprehension)

def neg3(matrix):
 return [[-item for item in row] for row in matrix]

Generator Comprehension
• We can use comprehension on generators

• Called generator expressions

• Generators are defined with round parentheses
squares = (n**2 for n in range(1, 100))

>>> next(squares)
1
>>> next(squares)
4
>>> next(squares)
9
>>> next(squares)
16
>>> next(squares)
Traceback (most recent call last):
 File "<pyshell#36>", line 1, in <module>
 next(squares)
StopIteration

Generator Comprehension
• The generator expression can be called with next()

• However, what if we want an infinite generator?

• Could define a generator the old fashioned way

def squares1():
 n=0
 while True:
 n+=1
 yield(n**2)

Generator Comprehension
• Or use generators defined in itertools

import itertools
squares2 = (n**2 for n in itertools.count(1,1))

Generator Comprehension

• WHY?
• Assume you want to process a huge set of data

• You need to create intermediate results

• If you use lists, they eat up memory

• If you use generators, they don't

And now for something
completely different

Copying Data Structures

• Copying and assignment are two different things

Copying Data Structures

• Copying and assignment are two different things

• We have an object a

• We assign a to b

• But the two objects are still linked:

a = set(1, 2, “one”)

Copying Data Structures

• Copying and assignment are two different things

a = set([1, 2, "one"])
print(a)
b = a
print(b)
Now we change set a
a.remove("one")
Which also changes set b
print(b)

Copying Data Structures

• Copying and assignment are two different things

• Here is what happens

• In Python, names point to objects

• Assigning adds a name to the same object

a {1, 2, “one”}

a {1, 2, “one”}

b

Copying Data Structures

• Copying and assignment are two different things

• Since there is only one object, I can manipulate the
object through either name

a {1, 2, “one”}

b

Copying Data Structures
• Copying and assignment are two different things

• If I want to copy, I need to do so explicitly

• Now changes to one do not change the other!

lista = [1, 2, "three", [4,5]]
listb = [x for x in lista]
lista[2] = 3
print(lista)
print(listb)

Copying Data Structures

• Copying and assignment are two different things

• One can use slices to copy lists

•

listb = lista[0:4]

Copying Data Structures

• Copying becomes difficult if we have compound
objects

• E.g.: A list which contains lists, sets, …

• Shallow copy:

• Resulting copies have shared elements

Copying Data Structures
• Example: A matrix as a list of rows

• Create zero row by multiplying list with an integer

• One might think it creates a structure like

• which is not entirely false

matrix = 3*[4*[0]]

[[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]]

Copying Data Structures

• We can get the elements as we should

• And we can set elements

• But now we see that we got three times the same row

matrix = 3*[4*[0]]
print(matrix[3][2])

matrix = 3*[4*[0]]
matrix[3][2] = 5

Copying Data Structures
matrix = 3*[4*[0]]
print(matrix)
matrix[2][3] = 5
print(matrix)

 RESTART: /Users/tjschwarzsj/Google Drive/AATeaching/Python/Programs/copying.py
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 5], [0, 0, 0, 5], [0, 0, 0, 5]]

Copying Data Structures

• How can we do this:

• Need to construct the zero rows independently

• Use e.g. list comprehension

matrix = [[0 for _ in range(4)] for i in range(3)]

Copying Data Structures

• Shallow copy: Assume we have

• We create a shallow copy by

• But here is what is happening

lista = [1, 2, [3,4,5]]

lista = [1, 2, [3, 4, 5]]
listb = lista[:]

lista

{1, 2, “one”}

listb

[1,2, ?]

[1,2, ?]

lista = [1, 2, [3, 4, 5]]
listb = lista[:]

The two lists still share a component. We can change this
component in one list and change it in the other one as well.

Copying Data Structures

• We have two copies of the list, but the third element are
two different names for the same object

lista

{1, 2, “one”}

listb

[1,2, ?]

[1,2, ?]

lista = [1, 2, [3, 4, 5]]
listb = lista[:]

Copying Data Structures

• In consequence, I can alter the same element in the list
which is element number 2

• prints out

lista = [1, 2, [3, 4, 5]]
listb = lista[:]
lista[2][0] = 6
print(lista)
print(listb)

[1, 2, [6, 4, 5]]
[1, 2, [6, 4, 5]]

Copying Data Structures

• I need to use a deep copy

• Easiest:

• Use the module copy

• Use copy.deepcopy(object) for deep copying

• Use copy.copy(object) for shallow copying

Copying Data Structures

• This is a famous Python gotcha

• Behavior is not intuitive.

