
Exceptions

Exceptions
• There are two approaches to living life as a religious:

• Before you do anything, you ask for permission

• Strengthens humility and denial of self

• Do something and then ask for pardon

• Strengthens your Ego too much, but makes it easier on the superior

• Similarly: There are two approaches to the risks of live:

• Make sure you are prepared for anything

• Just live your life and deal with the consequences of your errors.

• In programming, Python tends to fall squarely into the second category

• But it makes more sense than in real life

Exceptions
• RAISING AN EXCEPTION interrupts the flow of the

program

• HANDLING AN EXCEPTION puts the program flow back
on track or deals with an error situation

• Such as out of memory, file cannot be found, CPU
illegal instruction error, division by zero, overflow, …

Python Philosophy

• Handle the common case.

• And deal with the exceptions.

Philosopher’s Football

C, Java, C++ Philosophy
• C: check before you assume

• Java, C++: Use exceptions to handle bad situations

• Python: Use exceptions for the not so ordinary

Python
• If an instruction or block of instruction can cause an error,

put it in a try block.

try:
 int(string)

Converts the string into
an integer

Notice that we are not using the result of the conversion,
we just attempt the conversion

Python Exceptions
• Then afterwards, handle the exception.

• You should, but are not required to specify the possible
offending exception

 try:
 int(string)
except ValueError:
 print(“Conversion error”)

If the conversion fails, a
ValueError is thrown

This block handles the
exception

Python Exceptions
• How do you find which error is thrown:

• You can cause the error and see what type of error it is

• You can look it up

Division by zero creates a
ZeroDivisionError

Python Exceptions
• Putting things together: Testing whether a string

represents an integer

def is_int(string):
 try:
 int(string)
 return True
 except:
 return False

Try out the conversion

Python Exceptions
• Putting things together: Testing whether a string

represents an integer

def is_int(string):
 try:
 int(string)
 return True
 except:
 return False

Try out the conversion

It worked:

We return True

Python Exceptions
• Putting things together: Testing whether a string

represents an integer

def is_int(string):
 try:
 int(string)
 return True
 except:
 return False

Try out the conversion

It did NOT work:

An exception is thrown

We return FALSE

Python Exceptions
• As you can see from this example, the moment an

exception is thrown, we jump to the exception handler.

Python Exceptions
• When to use exceptions and when to use if

• Recall: Using if is defensive programming

• Recall: Using exceptions amounts to the same degree
of safety, but is offensive

• Rule of thumb:

• If exceptions are raised infrequently, then use them

Python Exceptions
• Let’s make some timing experiments

• Define two functions that square all elements in a list, if the
elements are integers.

def square_list(lista):
 result = []
 for element in lista:
 if element.isdigit():
 result.append(int(element)**2)def square_list2(lista):
 result = []
 for element in lista:
 try:

result.append(int(element)**2)
 except:
 pass

Python Exceptions
• The pass instruction:

• When Python expects a statement, but we don’t have
one:

• Just use pass

• The No-Operation instruction

Python Exceptions
• Recall how to use the time-module to obtain the CPU

(wall-clock) time

• We use this to measure execution time

• First a list that only contains integers
def timeit(function, trials):
 lista = [str(i) for i in range(1000000)]
 count = 0
 for _ in range(trials):
 start = time.time()
 lista2 = function(lista)
 count += time.time()-start
 return count/trials

Python Exceptions
• Result: Exceptions are somewhat faster

Python Exceptions
• What if none of the list elements are integers:

def timeit(function, trials):
 lista = ["a"+str(i) for i in range(1000000)]
 count = 0
 for _ in range(trials):
 start = time.time()
 lista2 = function(lista)
 count += time.time()-start
 return count/trials

Exceptions are
much slower

Python Exceptions
• What about if the letter is at the end

def timeit(function, trials):
 lista = [str(i)+"a" for i in range(1000000)]
 count = 0
 for _ in range(trials):
 start = time.time()
 lista2 = function(lista)
 count += time.time()-start
 return count/trials

Exceptions are
still much slower

Self Test
• Define a function that calculates the geometric mean of

two numbers.

• Use an exception to deal with a ValueError, arisen by
taking the square-root of a negative number

• Here is the if-version. We return None if there is no
mean.

def geo(x, y):
 if x*y > 0:
 return math.sqrt(x*y)
 return None

Self Test Solution

def geoe(x,y):
 try:
 return math.sqrt(x*y)
 except ValueError:
 return None

Multiple Exceptions
• We can write an exception handler that handles all the

exceptions

• This is discouraged since there are just too many
exceptions that can occur

• such as out-of-memory, system-error, keyboard-
interrupt …

• In this case, the except clause specifies no exception

try:
 accum += 1/n
except:

print(“something bad happened”)

No exception specified
Handler handles

everything

Multiple Exceptions
• Normally, you want to specify which exceptions you are

handling

• You can specify several exception handles by repeating the
exception clause

• Or you can handle a list of exceptions
def test():
 try:
 f = open("none.txt")
 block = f.read(256)
 except IOError:
 print("something happened when reading the file")
 except EOFError:
 print("ran out of file")
 except (KeyboardInterrupt, ValueError):
 print("something strange happened")

The parentheses are
necessary

Cleaning Up
• Sometimes you need to make sure that failure-prone

code cleans up

• Use the finally clause

• Guaranteed to be executed

• Even with return statements

• Even when exceptions are raised

Example for finally clause

• If we open a file without the if-clause, we are morally
obliged to close it

• Let’s say, if you have a long-running process that only
needs a file for a little time, you should not hog the file
and prevent others from accessing it.

Example for finally clause
def harmonic(filename):
 """
 Assumes that the elements in the file are numbers.
 We return the harmonic mean of the numbers.
 """
 count = 0
 accumulator = 0
 try:
 infile = open(filename, encoding="utf-8")
 for line in infile:
 for words in line.split():
 accumulator += 1/int(words)
 count += 1
 return count/accumulator
 except ZeroDivisionError:
 print("saw a zero")
 return 1000000000
 except ValueError:
 print("saw a non-integer")
 return 0
 finally:
 print("I am done and closing the file")
 infile.close()

Return in the try block

Return in the handler

But finally is
guaranteed to run
before any of the

returns

Raising exceptions
• You can also raise your own exception

• You can even define your own exceptions when you
have understood classes

• Just say: raise ValueError

• or whatever the exception is that you want to raise.

Self Test
• Recall that the finally clause is always executed.

• What is the output of the following code

def raising():
 try:
 raise ValueError
 except ValueError:
 return 0
 finally:
 return 1

Answer
• The functions returns 1

• The exception is raised and control passes to the
exception handler

• Before the exception handler can return, the finally
clause is executed

• And that one returns 1

Multiple Exceptions
• It is common that Python code throws multiple

exceptions

• Can list different exceptions using a tuple and handle
them all

• Or write different exception handlers

try:
 client_obj.get_url(url)
except (URLError, ValueError, SocketTimeout):
 client_obj.remove_url(url)

try:
 client_obj.get_url(url)
except (URLError, ValueError):
 client_obj.remove_url(url)
except SocketTimeout:
 client_obj.handle_url_timeout(url)

Handles to Exceptions
• Exceptions are classes that have methods

• To gain access use the as keyword

try:
 f = open(filename)
except OSError as e:
 if e.errno == errno.ENOENT:
 print('file not found')
 elif e.errno == errno.EACCES:
 print('permission denied')
 else:
 print('unexpected error')

Multiple Exceptions
• More than one exception can be triggered

• The first matching exception handler will handle, even if
a more specific exception handler is available

• prints out 'it failed'

try:
 f = open(a_missing_file)
execpt OSError:
 print('it failed')
except FileNotFoundError:
 print('File not found')

Multiple Exceptions
• Exceptions are in a hierarchy

• catches all exceptions except SystemExit,
KeyboardInterrupt, GeneratorExit

• If you want to catch those, change Exception to
BaseException

try:
 …
except Exception as e:
 …
 print(e)

Creating Custom
Exceptions

• To create a new exception, just define a class that
derives from Exception

class NetworkError(Exception):
 pass
class TimeoutError(NetworkError):
 pass

Creating Custom
Exceptions

• If your custom exception overrides the constructor

• Make sure you call the exception class constructor

• Parts of Python and libraries except all exceptions to
have an .args attribute, that will be provided by calling
the super

class CustomError(Exception):
 def __init__(self, message, status):
 self.message = message
 self.status = status

Chaining Exceptions
• Raise an exception in response to catching a different

exception, but include information about both exceptions
in the traceback

def example():
 try:
 int('N/A')
 except ValueError as e:
 raise RuntimeError('A parsing error occured') from e

Assertions
• To prevent error conditions, can use assertions

• E.g.: your code only runs on a linux machine

• If the condition is violated, throws an AssertionError

• But the assert statements are optimized away when

import sys

assert ('linux' in sys.platform),
 'this code runs on linus only')

Else Statement
• Else block after a try block is executed only if no

exception was raised

•

try:

except:

else:

finally:

run this code

execute if there is an
exception

execute if there is not
an exception

always run this code

Else Statement
• Exceptions in the else block would not be caught by the

current try block

for arg in sys.argv[1:]:
 try:
 f = open(arg, 'r')
 except OSError:
 print('cannot open', arg)
 else:
 print(arg, 'has', len(f.readlines()), 'lines')
 f.close()

Exercises
• The following code is potentially buggy.

info = [{'score': 3, 'confidence': 2},
 {'score': -1, 'confidence': 4},
 {'score': 1, 'confidence': 4},
 {'confidence': 0}]

def get_total_score(info):
 total = 0
 for item in info:
 total += item['score']
 return total

get_total_score(info)

Solutions
def get_total_score(info):
 total = 0
 number_of_items = 0
 for item in info:
 try:
 total += item['score']
 except KeyError:
 pass
 else:
 number_of_items += 1
 return total/number_of_items

print(get_total_score(info))

Exercises
• The following code is potentially buggy.

import os

def check(directory):
 for file_name in os.listdir(directory):
 with open(file_name) as infile:
 nr = len(infile.readlines())
 print(file_name, nr)

Solutions
import os

def check(directory):
 for file_name in os.listdir(directory):
 try:
 with open(file_name) as infile:
 nr = len(infile.readlines())
 print(file_name, nr)
 except UnicodeDecodeError:
 print('unicode decode error in', file_name)
 except IsADirectoryError:
 print(f'{file_name} is a directory')

