
Lists in Python
Thomas Schwarz SJ

Lists
• Python is a high-level programming language with built-in

sophisticated data structures

• The simplest of these data structures is the list.

• A list is just an ordered collection of other objects

• The type of the objects is not restricted

• Let’s start unpacking this a bit.

Lists
• We create a list by using the square brackets.

• alist = [1, 3.5, “hello”]

• A list with three elements of three different types

• blist = [1, 3.5, “hello”, 1]

• A list with four elements, where one element is
repeated

• clist = [1, “hello”, 3.5]

• A different list than alist, but with the same elements

• The order is different

Lists
• Accessing elements in a list

• We access elements in a list by using the square brackets
and an index

• Indices start at 0

• Example:

• lista = [‘a‘, ‘b’, ‘c‘, ‘d’]

• lista[0] is ‘a‘

• lista[1] is ‘b’

• lista[2] is ‘c’

Lists
• Python uses negative numbers in order to count from the

back of the list

• lista = [‘a‘, ‘b’, ‘c‘, ‘d’]

• lista[-1] is the last object, namely the character
‘d’

• lista[-2] is the second-last object, namely the
character ‘c’

• lista[-4] is the first object, namely the character ‘a’

Manipulating Lists
• We manipulate lists by calling list methods

• You should read up on lists in the Python
documentations

• https://docs.python.org/3/tutorial/datastructures.html

• The length (number of objects in a list) is obtained by the
len function.

https://docs.python.org/3/tutorial/datastructures.html

Manipulating Lists
• We add to a list by using the append method

• Example:

• The resulting list lista has five elements, the last one
being a list by itself.

• The append method always adds an element at the end.

Manipulating Lists
• The opposite of append is pop.

• Whereas append returns the special object None, pop
removes the last element in the list and returns it.

• Example

Manipulating Lists
• We can also combine two lists with extend.

• The method parameter is a list that is added to the first list.

• This is different than appending.

• The resulting list has four elements, with the last one being a list

Manipulating Lists
• To remove items from a list, we can use

• remove

• del

• The remove method removes the first element from the list
that matches a parameter

• It does not remove all elements

• Example:

Manipulating Lists
• del operator:

• A generic operator

• In order to remove an item from a list, you specify a list
and an index

• Example: Remove the third element (“c”) from a list

Manipulating Lists:
A Standard Pattern

• A pattern for list modification

• Often, we need to process a list

• A standard pattern:

• Create an empty result list

• Walk through the processed list

• Add elements to the result list

Manipulating Lists:
A Standard Pattern

• Example:

• Filtering:

• Retain all elements in a list that are even numbers

def even(lista):
 result = []
 for ele in lista:
 if ele%2==0:
 result.append(ele)
 return result

Create the result as an empty
list

Manipulating Lists:
A Standard Pattern

• Example:

• Filtering:

• Retain all elements in a list that are even numbers

def even(lista):
 result = []
 for ele in lista:
 if ele%2==0:
 result.append(ele)
 return result

Walk through the list

Manipulating Lists:
A Standard Pattern

• Example:

• Filtering:

• Retain all elements in a list that are even numbers

def even(lista):
 result = []
 for ele in lista:
 if ele%2==0:
 result.append(ele)
 return result

Filter on condition

Manipulating Lists:
A Standard Pattern

• Example:

• Filtering:

• Retain all elements in a list that are even numbers

def even(lista):
 result = []
 for ele in lista:
 if ele%2==0:
 result.append(ele)
 return result

Append to the result

Manipulating Lists:
A Standard Pattern

• Example:

• Filtering:

• Retain all elements in a list that are even numbers

def even(lista):
 result = []
 for ele in lista:
 if ele%2==0:
 result.append(ele)
 return result

Return the result

Manipulating Lists:
A Standard Pattern

• Example:

• Map — transforming all elements in a list

• Given a list of numbers, round them to the nearest
digit after the decimal point

Manipulating Lists:
A Standard Pattern

• Example:

def rounding(lista):
 result = []
 for ele in lista:
 result.append(round(ele,1))
 return result

Create an empty list

Manipulating Lists:
A Standard Pattern

• Example:

def rounding(lista):
 result = []
 for ele in lista:
 result.append(round(ele,1))
 return result

Walk through the list

Manipulating Lists:
A Standard Pattern

• Example:

def rounding(lista):
 result = []
 for ele in lista:
 result.append(round(ele,1))
 return result

Apply the function to the list
element

Manipulating Lists:
A Standard Pattern

• Example:

def rounding(lista):
 result = []
 for ele in lista:
 result.append(round(ele,1))
 return result

Append to the result

Manipulating Lists:
A Standard Pattern

• Example:

def rounding(lista):
 result = []
 for ele in lista:
 result.append(round(ele,1))
 return result

Return the result

Manipulating Lists:
A Standard Pattern

• We can generate this example to all functions of list elements

• This pattern is so important that Python 3 has a more elegant
way of doing it. It is called list comprehension

• The apply function was part of Python 2, depreciated in
Python 2.3 and abolished in Python 3.5

def apply(function, lista):
 result = []
 for ele in lista:
 result.append(function(ele))
 return result

Lists are objects
• Lists are objects

• Objects have methods

• Methods are functions that are called with an object
as a parameter, but that are specific to the object

• We write them as

• In fact, method is a function and object is the first
and sometimes only parameter

object . method (additional, optional parameters)

Methods vs. Function
• There are two built-in ways to

sort a list in Python:

• The sorted function

• The sort method for lists

• They are called differently
because one is a method and
one a function

• sorted returns a sorted list

• *.sort() does not return
anything, but the list is
sorted.

Manipulating Lists
• Here is an overview of the most important list methods:

Method Effect

append() adds an element to the end of the list

clear() removes all elements from a list

copy() returns a copy of the list

count() returns the number of elements in the list

extend() adds the elements in the parameter to the list

index() returns the index of the first occurrence of the parameter

insert() inserts an element at the specified location

pop() removes an element at the specified location or if left empty, removes the last element

remove() removes the first element with that value

reverse() reverses the order of the list

sort() sorts the list

Range is not a list
• A range belongs to a data structure (called iterators) that

are related to lists

• In an iterator, you can always produce the next element

• To make a list, just use the list keyword:

lista = list(range(2, 1000))

Lists and for loops
• The for-loop in Python iterates through a list (or more

generally an iterator)

• for x in lista:

• x takes on all values in lista

Checking membership
• In Python, membership in a list is checked with the in

keyword

• There is a more appealing, alternative form of negation

• Examples:

• if element in lista:

• if element not in lista:

• Use this one instead of the negation around the
statement

• if not element in lista:

Sieve of Eratosthenes
• To calculate a list of all primes, we could:

• Check all numbers in [2, 3, 4, … , n] that have no
divisors

• Which is tedious and does not scale to large n

• Eliminate all multiples

• This is the idea behind the famous Sieve of
Eratostenes

Sieve of Eratosthenes
• We start out with a list of all numbers between 2 and 1000

• [2, 3, 4, 5, 6, 7, … , 999, 1000]

• The smallest number in the list is a prime, this would be 2

• We can eliminate all true multiples of 2, that is, we
remove 4, 6, 8, 10, … , 1000 from the list

• This gives us

• [2, 3, 5, 7, 9, 11, 13, …, 997, 999]

• The next smallest number has also to be a prime

Sieve of Eratosthenes
• [2, 3, 5, 7, 9, 11, 13, 15, 17, …, 997, 999]

• Therefore, 3, is a prime.

• For the next step, we eliminate all multiples of three that are
left

• [2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, … ,995, 997]

• We remove all multiples of 5 that remain in the list: 25, 35, 55,
…

• [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, … ,991, 997]

• And so we continue, until we can no longer eliminate
multiples

Sieve of Eratosthenes
• We implement this in Python

• We first define a function that removes multiples of an
element from a list (of numbers)

• We need one parameter limit to tell us when we
should stop

def remove_multiples(element, lista, limit):
 multiplier = 2
 while multiplier*element <= limit:
 if multiplier*element in lista:
 lista.remove(multiplier*element)
 multiplier += 1

Sieve of Eratosthenes
• We can now implement the sieve

• We initialize a list to the first 1000 elements

• We maintain an index to tell us to which of the elements
we already processed

def eratosthenes():
 lista = list(range(2, 1000))
 index = 0

Sieve of Eratosthenes
• We stop when the index is about to fall out of the current

size of the list

• Don’t forget to increase the index

def eratosthenes():
 lista = list(range(2, 1000))
 index = 0
 while index < len(lista):
 #Do the work here

 index += 1

Sieve of Eratosthenes
• The work to do for each index is to remove the multiples

of the current element

def eratosthenes(max_number):
 lista = list(range(2, max_number))
 index = 0
 while index < len(lista):
 element = lista[index]
 remove_multiples(element, lista, limit)

 index += 1
return lista

Sieve of Erathosthenes
• And here is the result, all primes until 1000

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73,
77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139,
143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 203,
209, 211, 217, 221, 223, 227, 229, 233, 239, 241, 247, 251, 253, 257, 259, 263, 269,
271, 277, 281, 283, 287, 289, 293, 299, 301, 307, 311, 313, 317, 319, 323, 329, 331,
337, 341, 343, 347, 349, 353, 359, 361, 367, 371, 373, 377, 379, 383, 389, 391, 397,
401, 403, 407, 409, 413, 419, 421, 427, 431, 433, 437, 439, 443, 449, 451, 457, 461,
463, 467, 469, 473, 479, 481, 487, 491, 493, 497, 499, 503, 509, 511, 517, 521, 523,
527, 529, 533, 539, 541, 547, 551, 553, 557, 559, 563, 569, 571, 577, 581, 583, 587,
589, 593, 599, 601, 607, 611, 613, 617, 619, 623, 629, 631, 637, 641, 643, 647, 649,
653, 659, 661, 667, 671, 673, 677, 679, 683, 689, 691, 697, 701, 703, 707, 709, 713,
719, 721, 727, 731, 733, 737, 739, 743, 749, 751, 757, 761, 763, 767, 769, 773, 779,
781, 787, 791, 793, 797, 799, 803, 809, 811, 817, 821, 823, 827, 829, 833, 839, 841,
847, 851, 853, 857, 859, 863, 869, 871, 877, 881, 883, 887, 889, 893, 899, 901, 907,
911, 913, 917, 919, 923, 929, 931, 937, 941, 943, 947, 949, 953, 959, 961, 967, 971,
973, 977, 979, 983, 989, 991, 997]

Sieve of Eratosthenes
• This implementation can be improved in a number of

ways

• For example, we do not need to remove all multiples
because we know that some have been removed

• For example, if we are processing 13, then we do no
need to check for 2*13, 3*13, 4*13, … because they
have already been replaced

• And there are ways to implement it more elegantly, but
the point is just to see how to program with lists.

P ≠ NP
• Pythonic is not Non-Pythonic

• Using indices when processing lists is usually not
warranted

• As much as possible, write functions on lists that
would work with iterables just as well

Python Iterators
• Python iterator: an object that contains a countable

number of values

• An object is iterable if it implements an iter and a next
method

• iter returns an iterator

• next gives us the next element.

• When an iterator runs out of objects to provide on a
next, it will create a StopIteration exception

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while num_iterator:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Creating an iterator

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while True:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Looping

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while True:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Getting the
next item

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while True:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Handling the
exception
generated when
next fails

Python Iterators
• Why do you need to know iterators:

• To understand otherwise cryptic error messages

• To use

Python Generators
• Python allows you to define generators

• We do not discuss generators in this course but you
ought to be aware of their existence

• A generator object creates a sequence of objects

• A generator just creates a generator object

• Looks like a function, but has a yield instead of a return

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

Generators look like
functions !

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

But have a “yield”
instead of a “return”

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

If this were a function,
it would return just one
element

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

But a generator keeps
on yielding

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

This is tuple assignment!

Simultaneously assigns

previous <— current

current <— previous+current

Python Generator
• This Python generator will generate all the Fibonacci

numbers

Tuples
Thomas Schwarz, SJ

Tuples
• Tuples are like immutable lists.

• They are immutable, i.e. you cannot change them once
they have been created.

• This allows us to use them as keys for a dictionary

Tuple Creation
• You create a tuple by putting a comma separated list of

items in parentheses

small_primes = (2,3,5,7,11,13)

digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", “9")

Accessing Elements
• You access tuple coordinates by using the same notation

as for lists

• prints out “5”

digits = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9")

print(digits[5])

Using Tuples: Tuple
Assignment

• Tuple assignment

• The “tuple operator” is the comma

• Meaning, putting commas between things creates a
tuple

• Tuples can be assigned

Using Tuples: Tuple
Assignment

• Tuple assignment

• The “tuple operator” is the comma

• Meaning, putting commas between things creates a tuple

• Tuples can be assigned as tuples

• Which assigns the elements of the tuple as well

• Example:

• Creates two tuples and makes them equal

• Result is a is 3 and b is 5

a, b = 3, 5

Using Tuples: Tuple
Assignment

• Tuple assignment makes it easy to switch values

• Assume that we have two variables

• We want them to exchange values

• Here is code that does not succeed:

• Spend some time figuring out why

a=3
b=5

#now we want to switch values
a=b
b=a
print(a,b) #prints 5 5

Using Tuples: Tuple
Assignment

• When we assign b=a, the old value of a has just be
overwritten

a=3
b=5

#now we want to switch values
a=b
b=a
print(a,b) #prints 5 5

Using Tuples: Tuple
Assignment

• We need to safeguard the value of a in a temporary
variable

• This is a well-known trap for beginners

• But now we have three assignments
a=3
b=5

#now we want to switch values
temp = a
a=b
b=temp
print(a,b) #prints 5 3

Using Tuples: Tuple
Assignment

• With tuples, this works much simpler

• The right side of the assignment is a tuple

• We assign it as a tuple to the left side

• Which then updates the values of a and b

a=3
b=5

#now we want to switch values
a,b = b,a
print(a,b) #prints 5 3

Using Tuples: Unpacking
• In general, you can unpack a tuple through an assignment

• On the left, you have a tuple with variables

• On the right, you have an established tuple

• This will load name, last_name, birth_year, … with the
values in caesar

• The number of elements on both sides of the
assignment needs to be the same

(name, last_name, birth_year, birth_month, birth_date) = caesar

Using Tuples: Unpacking
• You can even unpack when calling a function

• Put an asterisk before the tuple to cause the unpacking

• Define a function of two variables

• We call it in the usual way

• But we can also call it with a tuple

def geo_mean(a,b):
return (a*b)**(1/2)

print(geo_mean(4,7))

tp = (3,7)
print(geo_mean(*tp))

Using Tuples: Several
Return Values

• Assume that you want to return more than one value from
a function

• You can “kludge” it by return a list

• Then you access the various return values via indices

• You can return a tuple

• And use tuple unpacking at the other end

Using Tuples: Unpacking
• Several return values example

• Assume that you want to return the mean and the
standard deviation of a list of numbers

import math

def stats(lista):
 if not lista: #lista is empty
 return 0,0
 mean = 0
 var = 0
 for element in lista:
 mean += element
 mean = mean/len(lista)
 for element in lista:
 var += (element-mean)**2
 return mean, math.sqrt(var/len(lista))

Using Tuples: Unpacking
• This code returns a tuple

• If we call this function, we unpack in a single statement

def stats(lista):
…
return mean/len(lista), math.sqrt(var/len(lista))

mu, sigma = stats([12,23,12,12,14,12,13,16,29,11,12,13])

