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Categorical Data
• Outcomes can be categorical


• Often, outcome is binary:


• President gets re-elected or not


• Customer is satisfied or not


• Often, explanatory variables are categorical as well


• Person comes from an under-performing school


• Order was made on a week-end


• …



Prediction Models for 
Binary Outcomes

• Famous example:


• Taken an image of a pet, predict whether this is a cat or 
a dog



Prediction Models for 
Binary Outcomes

• Bayes: generative classifier 

• Predicts indirectly  

• 


• Evaluates product of likelihood and prior


• Prior: Probability of a category  without looking at 
data


• Likelihood: Probability of observing data if from a 
category 

P(c |d)

̂c =  arg maxc∈CP(d |c)P(c)

c

c

PriorLikelihood



Prediction Models for 
Binary Outcomes

• Regression is a discriminative classifier


• Tries to learn directly the classification from data


• E.g.: All dog pictures have a collar


• Collar present —> predict dog


• Collar not present —> predict cat


• Computes directly P(c |d)



Prediction Models for 
Binary Outcomes

• Regression:


• Supervised learning: Have a training set with classification 
provided


• Input is given as vectors of numerical features


• 


• Classification function that calculates the predicted class 


• An objective function for learning: Measures the goodness of 
fit between true outcome and predicted outcome


• An algorithm to optimize the objective function 

x(i) = (x1,i, x2,i, …, xn,i)

̂y(x)



Prediction Models for 
Binary Outcomes

• Linear Regression:


• Classification function of type 


• 


• Objective function (a.k.a cost function)


• Sum of squared differences between predicted and 
observed outcomes 


• E.g. Test Set  


• Minimize cost function    

̂y ((x1, x2, …, xn)) = a1x1 + a2x2 + …anxn + b

T = {x(1), x(2), …x(m)}
m

∑
i=1

(y(i) − ̂y(i))2



Prediction Models for 
Binary Outcomes

• Linear regression can predict a numerical value


• It can be made to predict a binary value


• If the predictor is higher than a cut-off value: predict 
yes


• Else predict no


• But there are better ways to generate a binary classifier



Prediction Models for 
Binary Outcomes

• Good binary classifier:


• Since we want to predict the probability of a category 
based on the features:


• Should look like a probability


• Since we want to optimize:


• Should be easy to differentiate


• Best candidate classifier that has emerged:


• Sigmoid classifier



Logistic Regression
• Use logistic function


 σ(z) =
1

1 + exp(−z)
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Logistic Regression
• Combine with linear regression to obtain logistic 

regression approach:


• Learn best weights in 


• 


• We know interpret this as a probability for the positive 
outcome '+'


• Set a decision boundary at 0.5


• This is no restriction since we can adjust  and the 
weights

̂y ((x1, x2, …, xn)) = σ(b + w1x1 + w2x2 + …wnxn)

b



Logistic Regression
• We need to measure how far a prediction is from the true 

value


• Our predictions  and the true value  can only be 0 or 
1


• If :  Want to support  and penalize .


• If : Want to support  and penalize .


• One successful approach: 


•

̂y y

y = 1 ̂y = 1 ̂y = 0

y = 0 ̂y = 0 ̂y = 1

Loss( ̂y, y) = ̂yy(1 − ̂y)(1−y)



Logistic Regression
• Easier:  Take the negative logarithm of the loss function


• Cross Entropy Loss 


LCE = − y log( ̂y) − (1 − y)log(1 − ̂y)



Logistic Regression
• This approach is successful, because we can use Gradient Descent


• Training set of size 


• Minimize 


• Turns out to be a convex function, so minimization is simple! (As 
far as those things go)


• Recall:  





• We minimize with respect to the weights and 

m
m

∑
i=1

LCE(y(i), ̂y(i))

̂y ((x1, x2, …, xn)) = σ(b + w1x1 + w2x2 + …wnxn)
b



Logistic Regression
• Calculus:


           


                                         


• Difference between true  and estimated outcome , 
multiplied by input coordinate

δLCE(w, b)
δwj

= (σ(w1x1 + …wnxn + b) − y) xj

= ( ̂y − y)xj

y ̂y



Logistic Regression
• Stochastic Gradient Descent 


• Until gradient is almost zero:


• For each training point :


• Compute prediction 


• Compute loss


• Compute gradient


• Nudge weights in the opposite direction using a learning weight 



• 


• Adjust 

x(i), y(i)

̂y(i)

η

(w1, …, wn) ← (w1, …, wn) − η∇LCE

η



Logistic Regression
• Stochastic gradient descent uses a single data point


• Better results with random batches of points at the 
same time



Lasso and Ridge 
Regression

• If the feature vector is long, danger of overfitting is high


• We learn the details of the training set


• Want to limit the number of features with positive 
weight


• Dealt with by adding a regularization term to the cost 
function


• Regularization term depends on the weights


• Penalizes large weights



Lasso and Ridge 
Regression

• L2 regularization:


• Use a quadratic function of the weights


• Such as the euclidean norm of the weights


• Called Ridge Regression 

• Easier to optimize



Lasso and Ridge 
Regression

• L1 regularization


• Regularization term is the sum of the absolute values of 
weights


• Not differentiable, so optimization is more difficult


• BUT: effective at lowering the number of non-zero 
weights


• Feature selection:


• Restrict the number of features in a model


• Usually gives better predictions



Examples
• Example:  quality.csv


• Try to predict whether patient labeled care they 
received as poor or good


•



Examples
• First column is an arbitrary patient ID


• we make this the index


• One column is a Boolean, when imported into Python


• so we change it to a numeric value

df = pd.read_csv('quality.csv', sep=',', index_col=0) 
df.replace({False:0, True:1}, inplace=True) 



Examples
• Farmington Heart Data Project:


• https://framinghamheartstudy.org


• Monitoring health data since 1948


• 2002 enrolled grandchildren of first study



Examples



Examples
• Contains a few NaN data


• We just drop them

df = pd.read_csv('framingham.csv', sep=',') 
df.dropna(inplace=True)



Logistic Regression 
in Stats-Models

• Import statsmodels.api


• Interactively select the columns that gives us high p-
values

import statsmodels.api as sm

cols = [ 'Pain', 'TotalVisits',  
         'ProviderCount', 
         'MedicalClaims', 'ClaimLines', 
         'StartedOnCombination', 
         'AcuteDrugGapSmall',] 



Logistic Regression 
in Stats-Models

• Create a logit model


• Can do as we did for linear regression with a string


• Can do using a dataframe syntax


• Print the summary pages 

logit_model=sm.Logit(df.PoorCare,df[cols]) 
result=logit_model.fit()

print(result.summary2())



Logistic Regression 
in Stats-Models

• Print the results


•  


• This gives the "confusion matrix"


• Coefficient [i,j] gives:


• predicted i values 


• actual j values

print(result.pred_table())



Logistic Regression 
in Stats-Models

• Quality prediction:


•  


• 7 False negative and 18 false positives

[[91.  7.] 
 [18. 15.]]



Logistic Regression 
in Stats-Models

• Heart Event Prediction:


•  


• 26 false negatives


• 523 false positives

[[3075.   26.] 
 [ 523.   34.]]



Logistic Regression 
in Stats-Models

• Can try to improve using Lasso

result=logit_model.fit_regularized()



Logistic Regression 
in Stats-Models

• Can try to improve selecting only columns with high P-
values

Optimization terminated successfully. 
         Current function value: 0.423769 
         Iterations 6 
                         Results: Logit 
================================================================ 
Model:              Logit            Pseudo R-squared: 0.007     
Dependent Variable: TenYearCHD       AIC:              3114.2927 
Date:               2020-07-12 18:18 BIC:              3157.7254 
No. Observations:   3658             Log-Likelihood:   -1550.1   
Df Model:           6                LL-Null:          -1560.6   
Df Residuals:       3651             LLR p-value:      0.0019166 
Converged:          1.0000           Scale:            1.0000    
No. Iterations:     6.0000                                       
---------------------------------------------------------------- 
                  Coef.  Std.Err.    z    P>|z|   [0.025  0.975] 
---------------------------------------------------------------- 
currentSmoker     0.0390   0.0908  0.4291 0.6679 -0.1391  0.2170 
BPMeds            0.5145   0.2200  2.3388 0.0193  0.0833  0.9457 
prevalentStroke   0.7716   0.4708  1.6390 0.1012 -0.1511  1.6944 
prevalentHyp      0.8892   0.0983  9.0439 0.0000  0.6965  1.0818 
diabetes          1.4746   0.2696  5.4688 0.0000  0.9461  2.0030 
totChol          -0.0067   0.0007 -9.7668 0.0000 -0.0081 -0.0054 
glucose          -0.0061   0.0019 -3.2113 0.0013 -0.0098 -0.0024 
================================================================



Logistic Regression 
in Stats-Models

• Select the columns


•  


• Get a better (?) confusion matrix:


•     


• False negatives has gone down


• False positives has gone up

cols = ['currentSmoker', 'BPMeds',  
        'prevalentStroke', 'prevalentHyp', 
        'diabetes', 'totChol','glucose'] 
         

[[3086.   15.] 
 [ 549.    8.]]



Logistic Regression 
in Scikit-learn

• Import from sklearn

from sklearn.linear_model import LogisticRegression 
from sklearn import metrics 
from sklearn.metrics import confusion_matrix 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report



Logistic Regression 
in Scikit-learn

• Create a logistic regression object and fit it on the data

logreg = LogisticRegression() 
logreg.fit(X=df[cols], y = df.TenYearCHD) 
y_pred = logreg.predict(df[cols]) 
confusion_matrix = confusion_matrix(df.TenYearCHD, 
y_pred) 
print(confusion_matrix)



Logistic Regression 
in Scikit-learn

• Scikit-learn uses a different algorithm


• Confusion matrix on the whole set is 


• [[3087   14] 
 [ 535   22]]



Logistic Regression 
in Scikit-learn

• Can also divide the set in training and test set

X_train, X_test, y_train, y_test =  
   train_test_split(df[cols],  
                    df.TenYearCHD, 
                    test_size=0.3, 
                    random_state=0) 
logreg.fit(X_train, y_train) 
y_pred = logreg.predict(X_test)  
confusion_matrix = confusion_matrix(y_test, y_pred) 
print(confusion_matrix)



Logistic Regression 
in Scikit-learn

• Confusion matrix


• [[915   1] 
 [176   6]]



Measuring Success
              precision    recall  f1-score   support 

           0       0.84      1.00      0.91       916 
           1       0.86      0.03      0.06       182 

    accuracy                           0.84      1098 
   macro avg       0.85      0.52      0.49      1098 
weighted avg       0.84      0.84      0.77      1098



Measuring Success
• How can we measure accuracy?


• accuracy = (fp+fn)/(tp+tn+fp+fn)


• Unfortunately, because of skewed data sets, often 
very high


• precision = tp/(tp+fp)


• recall = tp/(tp+fn)


• F measure = harmonic mean of precision and recall



Probit Regression
• Instead of using the logistic function , can also use the 

cumulative distribution function of the normal distribution





• Predictor is then


σ

erf(z) =
2

π ∫
z

0
exp(−t2)dt

1
2 (1+erf(b + w1x1 + w2x2 + … + wnxn))



Probit Regression
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Probit Regression
• Calculations with probit are more involved


• Statsmodels implements it


•  


• Fit the probit model

from statsmodels.discrete.discrete_model import Probit

probit_model=Probit(df.TenYearCHD,df[cols]) 
result=probit_model.fit() 

print(result.summary()) 
print(result.pred_table()) 
for i in range(20): 
 print(df.TenYearCHD.iloc[i], 
result.predict(df[cols]).iloc[i])



Probit Regression
• Confusion matrix is now


• More false positives but less false negatives

[[3085.   16.] 
 [ 547.   10.]]



Multinomial Logistic 
Regression

• Want to predict one of several categories based on 
feature vector


• Use the softmax function 

softmax (z1, z2, …, zm) = ( ez1

∑m
i=1 ezi

,
ez2

∑m
i=1 ezi

, …,
ezm

∑m
i=1 ezi )



Multinomial Logistic 
Regression

• Learning is still possible, but more complicated



Multinomial Logistic 
Regression

model1 = LogisticRegression(random_state=0,  
                            multi_class='multinomial',  
                            penalty='none',  
                            solver='newton-cg').fit(X_train, y_train) 
preds = model1.predict(X_test)


