
Logistic Regression
Thomas Schwarz

Categorical Data
• Outcomes can be categorical

• Often, outcome is binary:

• President gets re-elected or not

• Customer is satisfied or not

• Often, explanatory variables are categorical as well

• Person comes from an under-performing school

• Order was made on a week-end

• …

Prediction Models for
Binary Outcomes

• Famous example:

• Taken an image of a pet, predict whether this is a cat or
a dog

Prediction Models for
Binary Outcomes

• Bayes: generative classifier

• Predicts indirectly

•

• Evaluates product of likelihood and prior

• Prior: Probability of a category without looking at
data

• Likelihood: Probability of observing data if from a
category

P(c |d)

̂c = arg maxc∈CP(d |c)P(c)

c

c

PriorLikelihood

Prediction Models for
Binary Outcomes

• Regression is a discriminative classifier

• Tries to learn directly the classification from data

• E.g.: All dog pictures have a collar

• Collar present —> predict dog

• Collar not present —> predict cat

• Computes directly P(c |d)

Prediction Models for
Binary Outcomes

• Regression:

• Supervised learning: Have a training set with classification
provided

• Input is given as vectors of numerical features

•

• Classification function that calculates the predicted class

• An objective function for learning: Measures the goodness of
fit between true outcome and predicted outcome

• An algorithm to optimize the objective function

x(i) = (x1,i, x2,i, …, xn,i)

̂y(x)

Prediction Models for
Binary Outcomes

• Linear Regression:

• Classification function of type

•

• Objective function (a.k.a cost function)

• Sum of squared differences between predicted and
observed outcomes

• E.g. Test Set

• Minimize cost function

̂y ((x1, x2, …, xn)) = a1x1 + a2x2 + …anxn + b

T = {x(1), x(2), …x(m)}
m

∑
i=1

(y(i) − ̂y(i))2

Prediction Models for
Binary Outcomes

• Linear regression can predict a numerical value

• It can be made to predict a binary value

• If the predictor is higher than a cut-off value: predict
yes

• Else predict no

• But there are better ways to generate a binary classifier

Prediction Models for
Binary Outcomes

• Good binary classifier:

• Since we want to predict the probability of a category
based on the features:

• Should look like a probability

• Since we want to optimize:

• Should be easy to differentiate

• Best candidate classifier that has emerged:

• Sigmoid classifier

Logistic Regression
• Use logistic function

 σ(z) =
1

1 + exp(−z)

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

�
�'

Logistic Regression
• Combine with linear regression to obtain logistic

regression approach:

• Learn best weights in

•

• We know interpret this as a probability for the positive
outcome '+'

• Set a decision boundary at 0.5

• This is no restriction since we can adjust and the
weights

̂y ((x1, x2, …, xn)) = σ(b + w1x1 + w2x2 + …wnxn)

b

Logistic Regression
• We need to measure how far a prediction is from the true

value

• Our predictions and the true value can only be 0 or
1

• If : Want to support and penalize .

• If : Want to support and penalize .

• One successful approach:

•

̂y y

y = 1 ̂y = 1 ̂y = 0

y = 0 ̂y = 0 ̂y = 1

Loss(̂y, y) = ̂yy(1 − ̂y)(1−y)

Logistic Regression
• Easier: Take the negative logarithm of the loss function

• Cross Entropy Loss

LCE = − y log(̂y) − (1 − y)log(1 − ̂y)

Logistic Regression
• This approach is successful, because we can use Gradient Descent

• Training set of size

• Minimize

• Turns out to be a convex function, so minimization is simple! (As
far as those things go)

• Recall:

• We minimize with respect to the weights and

m
m

∑
i=1

LCE(y(i), ̂y(i))

̂y ((x1, x2, …, xn)) = σ(b + w1x1 + w2x2 + …wnxn)
b

Logistic Regression
• Calculus:

• Difference between true and estimated outcome ,
multiplied by input coordinate

δLCE(w, b)
δwj

= (σ(w1x1 + …wnxn + b) − y) xj

= (̂y − y)xj

y ̂y

Logistic Regression
• Stochastic Gradient Descent

• Until gradient is almost zero:

• For each training point :

• Compute prediction

• Compute loss

• Compute gradient

• Nudge weights in the opposite direction using a learning weight

•

• Adjust

x(i), y(i)

̂y(i)

η

(w1, …, wn) ← (w1, …, wn) − η∇LCE

η

Logistic Regression
• Stochastic gradient descent uses a single data point

• Better results with random batches of points at the
same time

Lasso and Ridge
Regression

• If the feature vector is long, danger of overfitting is high

• We learn the details of the training set

• Want to limit the number of features with positive
weight

• Dealt with by adding a regularization term to the cost
function

• Regularization term depends on the weights

• Penalizes large weights

Lasso and Ridge
Regression

• L2 regularization:

• Use a quadratic function of the weights

• Such as the euclidean norm of the weights

• Called Ridge Regression

• Easier to optimize

Lasso and Ridge
Regression

• L1 regularization

• Regularization term is the sum of the absolute values of
weights

• Not differentiable, so optimization is more difficult

• BUT: effective at lowering the number of non-zero
weights

• Feature selection:

• Restrict the number of features in a model

• Usually gives better predictions

Examples
• Example: quality.csv

• Try to predict whether patient labeled care they
received as poor or good

•

Examples
• First column is an arbitrary patient ID

• we make this the index

• One column is a Boolean, when imported into Python

• so we change it to a numeric value

df = pd.read_csv('quality.csv', sep=',', index_col=0)
df.replace({False:0, True:1}, inplace=True)

Examples
• Farmington Heart Data Project:

• https://framinghamheartstudy.org

• Monitoring health data since 1948

• 2002 enrolled grandchildren of first study

Examples

Examples
• Contains a few NaN data

• We just drop them

df = pd.read_csv('framingham.csv', sep=',')
df.dropna(inplace=True)

Logistic Regression
in Stats-Models

• Import statsmodels.api

• Interactively select the columns that gives us high p-
values

import statsmodels.api as sm

cols = ['Pain', 'TotalVisits',
 'ProviderCount',
 'MedicalClaims', 'ClaimLines',
 'StartedOnCombination',
 'AcuteDrugGapSmall',]

Logistic Regression
in Stats-Models

• Create a logit model

• Can do as we did for linear regression with a string

• Can do using a dataframe syntax

• Print the summary pages

logit_model=sm.Logit(df.PoorCare,df[cols])
result=logit_model.fit()

print(result.summary2())

Logistic Regression
in Stats-Models

• Print the results

•

• This gives the "confusion matrix"

• Coefficient [i,j] gives:

• predicted i values

• actual j values

print(result.pred_table())

Logistic Regression
in Stats-Models

• Quality prediction:

•

• 7 False negative and 18 false positives

[[91. 7.]
 [18. 15.]]

Logistic Regression
in Stats-Models

• Heart Event Prediction:

•

• 26 false negatives

• 523 false positives

[[3075. 26.]
 [523. 34.]]

Logistic Regression
in Stats-Models

• Can try to improve using Lasso

result=logit_model.fit_regularized()

Logistic Regression
in Stats-Models

• Can try to improve selecting only columns with high P-
values

Optimization terminated successfully.
 Current function value: 0.423769
 Iterations 6
 Results: Logit
==
Model: Logit Pseudo R-squared: 0.007
Dependent Variable: TenYearCHD AIC: 3114.2927
Date: 2020-07-12 18:18 BIC: 3157.7254
No. Observations: 3658 Log-Likelihood: -1550.1
Df Model: 6 LL-Null: -1560.6
Df Residuals: 3651 LLR p-value: 0.0019166
Converged: 1.0000 Scale: 1.0000
No. Iterations: 6.0000
--
 Coef. Std.Err. z P>|z| [0.025 0.975]
--
currentSmoker 0.0390 0.0908 0.4291 0.6679 -0.1391 0.2170
BPMeds 0.5145 0.2200 2.3388 0.0193 0.0833 0.9457
prevalentStroke 0.7716 0.4708 1.6390 0.1012 -0.1511 1.6944
prevalentHyp 0.8892 0.0983 9.0439 0.0000 0.6965 1.0818
diabetes 1.4746 0.2696 5.4688 0.0000 0.9461 2.0030
totChol -0.0067 0.0007 -9.7668 0.0000 -0.0081 -0.0054
glucose -0.0061 0.0019 -3.2113 0.0013 -0.0098 -0.0024
==

Logistic Regression
in Stats-Models

• Select the columns

•

• Get a better (?) confusion matrix:

•

• False negatives has gone down

• False positives has gone up

cols = ['currentSmoker', 'BPMeds',
 'prevalentStroke', 'prevalentHyp',
 'diabetes', 'totChol','glucose']

[[3086. 15.]
 [549. 8.]]

Logistic Regression
in Scikit-learn

• Import from sklearn

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

Logistic Regression
in Scikit-learn

• Create a logistic regression object and fit it on the data

logreg = LogisticRegression()
logreg.fit(X=df[cols], y = df.TenYearCHD)
y_pred = logreg.predict(df[cols])
confusion_matrix = confusion_matrix(df.TenYearCHD,
y_pred)
print(confusion_matrix)

Logistic Regression
in Scikit-learn

• Scikit-learn uses a different algorithm

• Confusion matrix on the whole set is

• [[3087 14]
 [535 22]]

Logistic Regression
in Scikit-learn

• Can also divide the set in training and test set

X_train, X_test, y_train, y_test =
 train_test_split(df[cols],
 df.TenYearCHD,
 test_size=0.3,
 random_state=0)
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
confusion_matrix = confusion_matrix(y_test, y_pred)
print(confusion_matrix)

Logistic Regression
in Scikit-learn

• Confusion matrix

• [[915 1]
 [176 6]]

Measuring Success
 precision recall f1-score support

 0 0.84 1.00 0.91 916
 1 0.86 0.03 0.06 182

 accuracy 0.84 1098
 macro avg 0.85 0.52 0.49 1098
weighted avg 0.84 0.84 0.77 1098

Measuring Success
• How can we measure accuracy?

• accuracy = (fp+fn)/(tp+tn+fp+fn)

• Unfortunately, because of skewed data sets, often
very high

• precision = tp/(tp+fp)

• recall = tp/(tp+fn)

• F measure = harmonic mean of precision and recall

Probit Regression
• Instead of using the logistic function , can also use the

cumulative distribution function of the normal distribution

• Predictor is then

σ

erf(z) =
2

π ∫
z

0
exp(−t2)dt

1
2 (1+erf(b + w1x1 + w2x2 + … + wnxn))

Probit Regression

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

�
probit

Probit Regression
• Calculations with probit are more involved

• Statsmodels implements it

•

• Fit the probit model

from statsmodels.discrete.discrete_model import Probit

probit_model=Probit(df.TenYearCHD,df[cols])
result=probit_model.fit()

print(result.summary())
print(result.pred_table())
for i in range(20):
 print(df.TenYearCHD.iloc[i],
result.predict(df[cols]).iloc[i])

Probit Regression
• Confusion matrix is now

• More false positives but less false negatives

[[3085. 16.]
 [547. 10.]]

Multinomial Logistic
Regression

• Want to predict one of several categories based on
feature vector

• Use the softmax function

softmax (z1, z2, …, zm) = (ez1

∑m
i=1 ezi

,
ez2

∑m
i=1 ezi

, …,
ezm

∑m
i=1 ezi)

Multinomial Logistic
Regression

• Learning is still possible, but more complicated

Multinomial Logistic
Regression

model1 = LogisticRegression(random_state=0,
 multi_class='multinomial',
 penalty='none',
 solver='newton-cg').fit(X_train, y_train)
preds = model1.predict(X_test)

