Thomas Schwarz

Categorical Data

- Outcomes can be categorical
 - Often, outcome is binary:
 - President gets re-elected or not
 - Customer is satisfied or not
 - Often, explanatory variables are categorical as well
 - Person comes from an under-performing school
 - Order was made on a week-end

- Famous example:
 - Taken an image of a pet, predict whether this is a cat or a dog

- Bayes: generative classifier
 - Predicts indirectly P(c | d)

•
$$\hat{c} = \arg \max_{c \in C} P(d \mid c) P(c)$$

Likelihardior

- Evaluates product of likelihood and prior
 - Prior: Probability of a category *c* without looking at data
 - Likelihood: Probability of observing data if from a category *c*

- Regression is a *discriminative classifier*
 - Tries to learn directly the classification from data
 - E.g.: All dog pictures have a collar
 - Collar present —> predict dog
 - Collar not present —> predict cat
 - Computes directly $P(c \mid d)$

- Regression:
 - Supervised learning: Have a training set with classification provided
 - Input is given as vectors of numerical features

•
$$\mathbf{x}^{(i)} = (x_{1,i}, x_{2,i}, \dots, x_{n,i})$$

- Classification function that calculates the predicted class $\hat{y}(\mathbf{x})$
- An objective function for learning: Measures the goodness of fit between true outcome and predicted outcome
- An algorithm to optimize the objective function

- Linear Regression:
 - Classification function of type

•
$$\hat{y}((x_1, x_2, \dots, x_n)) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n + b$$

- Objective function (a.k.a cost function)
 - Sum of squared differences between predicted and observed outcomes
 - E.g. Test Set $T = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots \mathbf{x}^{(m)}\}$

Minimize cost function
$$\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$$

- Linear regression can predict a numerical value
 - It can be made to predict a binary value
 - If the predictor is higher than a cut-off value: predict yes
 - Else predict no
- But there are better ways to generate a binary classifier

- Good binary classifier:
 - Since we want to predict the probability of a category based on the features:
 - Should look like a probability
 - Since we want to optimize:
 - Should be easy to differentiate
 - Best candidate classifier that has emerged:
 - Sigmoid classifier

• Use logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- Combine with linear regression to obtain logistic regression approach:
 - Learn best weights in

•
$$\hat{y}((x_1, x_2, \dots, x_n)) = \sigma(b + w_1x_1 + w_2x_2 + \dots + w_nx_n)$$

- We know interpret this as a probability for the positive outcome '+'
- Set a *decision boundary* at 0.5
 - This is no restriction since we can adjust b and the weights

- We need to measure how far a prediction is from the true value
 - Our predictions ŷ and the true value y can only be 0 or
 1
 - If y = 1: Want to support $\hat{y} = 1$ and penalize $\hat{y} = 0$.
 - If y = 0: Want to support $\hat{y} = 0$ and penalize $\hat{y} = 1$.
 - One successful approach:
 - Loss $(\hat{y}, y) = \hat{y}^{y}(1 \hat{y})^{(1-y)}$

- Easier: Take the negative logarithm of the loss function
 - Cross Entropy Loss

$$L_{CE} = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

- This approach is successful, because we can use Gradient Descent
 - Training set of size *m*

• Minimize
$$\sum_{i=1}^{m} L_{CE}(y^{(i)}, \hat{y}^{(i)})$$

- Turns out to be a convex function, so minimization is simple! (As far as those things go)
- Recall:

$$\hat{y}\left((x_1, x_2, \dots, x_n)\right) = \sigma(b + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$$

• We minimize with respect to the weights and b

• Calculus:

$$\frac{\delta \mathsf{L}_{\mathsf{CE}}(w, b)}{\delta w_j} = \left(\sigma(w_1 x_1 + \dots w_n x_n + b) - y\right) x_j$$
$$= (\hat{y} - y) x_j$$

• Difference between true y and estimated outcome \hat{y} , multiplied by input coordinate

- Stochastic Gradient Descent
 - Until gradient is almost zero:
 - For each training point $x^{(i)}$, $y^{(i)}$:
 - Compute prediction $\hat{y}^{(i)}$
 - Compute loss
 - Compute gradient
 - Nudge weights in the opposite direction using a learning weight η
 - $(w_1, \dots, w_n) \leftarrow (w_1, \dots, w_n) \eta \nabla \mathsf{L}_{\mathsf{CE}}$
 - Adjust η

- Stochastic gradient descent uses a single data point
 - Better results with random batches of points at the same time

Lasso and Ridge Regression

- If the feature vector is long, danger of overfitting is high
 - We learn the details of the training set
 - Want to limit the number of features with positive weight
 - Dealt with by adding a regularization term to the cost function
 - Regularization term depends on the weights
 - Penalizes large weights

Lasso and Ridge Regression

- L2 regularization:
 - Use a quadratic function of the weights
 - Such as the euclidean norm of the weights
 - Called Ridge Regression
 - Easier to optimize

Lasso and Ridge Regression

- L1 regularization
 - Regularization term is the sum of the absolute values of weights
 - Not differentiable, so optimization is more difficult
 - BUT: effective at lowering the number of non-zero weights
- Feature selection:
 - Restrict the number of features in a model
 - Usually gives better predictions

- Example: quality.csv
 - Try to predict whether patient labeled care they received as poor or good

quality													
MemberID	InpatientDays	ERVisits	OfficeVisits	Narcotics	DaysSinceLastERVisit	Pain	TotalVisits	ProviderCount	MedicalClaims	ClaimLines	StartedOnCombination	AcuteDrugGapSmall	PoorCare
1	0	0	18	1	731	10	18	21	93	222	FALSE	0	0
2	1	1	6	1	411	0	8	27	19	115	FALSE	1	0
3	0	0	5	3	731	10	5	16	27	148	FALSE	5	0
4	0	1	19	0	158	34	20	14	59	242	FALSE	0	0
5	8	2	19	3	449	10	29	24	51	204	FALSE	0	0
6	2	0	9	2	731	6	11	40	53	156	FALSE	4	1
7	16	1	8	1	173.9583333	4	25	19	40	261	FALSE	0	0
8	2	0	8	0	731	5	10	11	28	87	FALSE	0	0
9	2	1	4	3	45	5	7	28	20	98	FALSE	0	1
10	4	2	0	2	104	2	6	21	17	66	FALSE	0	0
11	6	5	20	2	156	9	31	19	43	126	FALSE	2	0
12	0	0	7	4	731	0	7	8	23	41	FALSE	2	0
13	0	1	3	1	389	23	4	13	18	70	FALSE	0	0
14	1	1	20	3	594.9583333	16	22	18	48	133	FALSE	0	0
15	6	2	31	3	640.9583333	70	39	28	101	233	FALSE	0	0
16	0	0	8	0	731	0	8	5	19	48	FALSE	0	0
17	2	0	9	0	731	29	11	22	39	120	FALSE	0	0
18	3	0	20	1	731	13	23	17	34	73	FALSE	3	1
10	0	0	44	^	704	6	4.6	10	00			4	0

- First column is an arbitrary patient ID
 - we make this the index
- One column is a Boolean, when imported into Python
 - so we change it to a numeric value

df = pd.read_csv('quality.csv', sep=',', index_col=0)
df.replace({False:0, True:1}, inplace=True)

- Farmington Heart Data Project:
 - https://framinghamheartstudy.org
 - Monitoring health data since 1948
 - 2002 enrolled grandchildren of first study

male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	TenYearCHD
1	39	4	0	0	0	0	0	0	195	106	70	26.97	80	77	0
0	46	2	0	0	0	0	0	0	250	121	81	28.73	95	76	0
1	48	1	1	20	0	0	0	0	245	127.5	80	25.34	75	70	0
0	61	3	1	30	0	0	1	0	225	150	95	28.58	65	103	1
0	46	3	1	23	0	0	0	0	285	130	84	23.1	85	85	0
0	43	2	0	0	0	0	1	0	228	180	110	30.3	77	99	0
0	63	1	0	0	0	0	0	0	205	138	71	33.11	60	85	1
0	45	2	1	20	0	0	0	0	313	100	71	21.68	79	78	0
1	52	1	0	0	0	0	1	0	260	141.5	89	26.36	76	79	0
1	43	1	1	30	0	0	1	0	225	162	107	23.61	93	88	0
0	50	1	0	0	0	0	0	0	254	133	76	22.91	75	76	0

паннунан

- Contains a few NaN data
 - We just drop them

df = pd.read_csv('framingham.csv', sep=',')
df.dropna(inplace=True)

• Import statsmodels.api

```
import statsmodels.api as sm
```

 Interactively select the columns that gives us high pvalues

```
cols = [ 'Pain', 'TotalVisits',
    'ProviderCount',
    'MedicalClaims', 'ClaimLines',
    'StartedOnCombination',
    'AcuteDrugGapSmall',]
```

- Create a logit model
 - Can do as we did for linear regression with a string
 - Can do using a dataframe syntax

logit_model=sm.Logit(df.PoorCare,df[cols])
result=logit_model.fit()

• Print the summary pages

print(result.summary2())

- Print the results
 - print(result.pred_table())
- This gives the "confusion matrix"
 - Coefficient [i,j] gives:
 - predicted i values
 - actual j values

Actual Values

- Quality prediction:
 - [[91. 7.] [18. 15.]]
- 7 False negative and 18 false positives

- Heart Event Prediction:
 - [[3075. 26.] [523. 34.]]
- 26 false negatives
- 523 false positives

• Can try to improve using Lasso

result=logit_model.fit_regularized()

 Can try to improve selecting only columns with high Pvalues

Optimization terminated successfully.

Current function value: 0.423769 Iterations 6

Results: Logit

=======================================	=======		====	=====		======		===
Model:	Logit	Ē.		Pseud	lo R-squ	0.007		
Dependent Variable	e: TenYe	earCHD		AIC:	_	3114.2927		
Date:	2020-	2020-07-12 18:18				3157.7254		
No. Observations:	3658	3658			Likeliho	-1550.1		
Df Model:	6	6			111:	-1560.6		
Df Residuals:	3651	3651			-value	0.0019166		
Converged:	1.000	00		Scale):		1.0000	
No. Iterations:	6.000	00						
	Coef.	Std.Err.		Z	₽> z	[0.02	25 0.97	75]
currentSmoker	0.0390	0.0908	0.	4291	0.6679	-0.139	91 0.21	L70
BPMeds	0.5145	0.2200	2.	3388	0.0193	0.083	33 0.94	157
prevalentStroke	0.7716	0.4708	1.	6390	0.1012	-0.151	L1 1.69	944
prevalentHyp	0.8892	0.0983	9.	0439	0.0000	0.696	55 1.08	318
diabetes	1.4746	0.2696	5.	4688	0.0000	0.940	51 2.00	020
totChol -	-0.0067	0.0007	-9.	7668	0.0000	-0.008	31 -0.00)54
glucose -	-0.0061	0.0019	-3.	2113	0.0013	-0.009	98 -0.00	24

- Select the columns
- Get a better (?) confusion matrix:
 - [[3086. 15.] [549. 8.]]
 - False negatives has gone down
 - False positives has gone up

• Import from sklearn

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

• Create a logistic regression object and fit it on the data

```
logreg = LogisticRegression()
logreg.fit(X=df[cols], y = df.TenYearCHD)
y_pred = logreg.predict(df[cols])
confusion_matrix = confusion_matrix(df.TenYearCHD,
y_pred)
print(confusion_matrix)
```

- Scikit-learn uses a different algorithm
 - Confusion matrix on the whole set is
 - [[3087 14] [535 22]]

Can also divide the set in training and test set

- Confusion matrix
 - [[915 1] [176 6]]

Measuring Success

	precision	recall	f1-score	support
0	0.84	1.00	0.91	916
1	0.86	0.03	0.06	182
accuracy			0.84	1098
macro avg	0.85	0.52	0.49	1098
weighted avg	0.84	0.84	0.77	1098

Measuring Success

- How can we measure accuracy?
 - accuracy = (fp+fn)/(tp+tn+fp+fn)
 - Unfortunately, because of skewed data sets, often very high
 - precision = tp/(tp+fp)
 - recall = tp/(tp+fn)
 - F measure = harmonic mean of precision and recall

• Instead of using the logistic function σ , can also use the cumulative distribution function of the normal distribution

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) dt$$

• Predictor is then

$$\frac{1}{2} \left(1 + \operatorname{erf}(b + w_1 x_1 + w_2 x_2 + \dots + w_n x_n) \right)$$

- Calculations with probit are more involved
 - Statsmodels implements it
 - from statsmodels.discrete.discrete_model import Probit
 - Fit the probit model

```
probit_model=Probit(df.TenYearCHD,df[cols])
result=probit_model.fit()
```

```
print(result.summary())
print(result.pred_table())
for i in range(20):
```

print(df.TenYearCHD.iloc[i],
result.predict(df[cols]).iloc[i])

• Confusion matrix is now

[[3085. 16.] [547. 10.]]

• More false positives but less false negatives

Multinomial Logistic Regression

- Want to predict one of several categories based on feature vector
- Use the softmax function

softmax
$$(z_1, z_2, ..., z_m) = \left(\frac{e^{z_1}}{\sum_{i=1}^m e^{z_i}}, \frac{e^{z_2}}{\sum_{i=1}^m e^{z_i}}, ..., \frac{e^{z_m}}{\sum_{i=1}^m e^{z_i}}\right)$$

Multinomial Logistic Regression

• Learning is still possible, but more complicated

Multinomial Logistic Regression