
Python for Data 
Science
Overview of Python


Why Python

Installing Python


Installing Python Modules



Overview of the course
• Assumptions:  


• We are here to learn some new skills


• We learn new skills by doing


• We work better with others


• Python is important


• It is a glue language


• Need minimal python skills to use 


• It is interesting on its own


• It's a modern language with interesting features


• It's useful where-ever modules don't exist



Python
• Python is an interpreted (scripting) language


• Source code is compiled into a bytecode 
representation


• Executed by Python virtual machine (usually 
implemented in C or Java)


• If performance is needed: 


• Can call C-code from Python


• Use PyPy with Just-In-Time compilation (JIT)



Python
• Why Python:


• Cool language


• Extensible through modules


• Statistics


• Machine learning


• Graphics



Python 
• Getting Python


• Can use bundles (anaconda) 


• For the first half: get native Python from Python.org


• Python 2.7 stable solution (built into MacOS)


• Python 3.8.2 the version we need


• Important :  Allow automatic path adjustments on 
windows


• This are the defaults



Python 
• Using Python:


• We are going to use IDLE


• Can create and safe scripts


• Can interact directly in the IDE



Python 3 Modules
• Python comes with many pre-installed modules


• We need to install some modules


• Use Pip


• MacOS / Linus


• In a shell:


• Windows:


• In a command window 

thomasschwarz@Peter-Canisius Module1 % python3.8 -m pip install matplotlib

py -3.8 -m pip install matplotlib



Why Python
• Universal, accessible language


• Clear and simple syntax


• Python philosophy:  The frequent should be easy


• Made for reading


• Used for fast prototyping


• Excellent support community


• Help for beginners and experts is easily available



Why Python
• Universal Language


• Serves many different constituencies


• Examples:


• Gaming: AI engine is usually in Python


• String processing: Basis for digital humanities and data wrangling


• Many extension modules


• With scypy or numpy, fast programs for scientific programming


• Use pyplot for good quality graphics


• …


• Notebooks based on Python (Jupyter) integrate presentation, data, 
and programs



Why Python
• Python in Data Science



Python Modules



Why Python
• Example: 


• Time series data:  closing prices of four stock indices


• given as a cvs file


• Use Pandas in order to deal with two dimensional data


• Use matplotlib for graphics 



Why Python? Time Series 
Example

• Import the modules 


• Import the cvs file as a pandas dataframe


• The first column should be the index, read as a date

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt

raw_data = pd.read_csv('Index2018.csv') 
values = raw_data.copy()

values.date = pd.to_datetime(values.date, dayfirst=True) 
values.set_index("date", inplace = True) 
print(values.describe()) 
print(values.head()) 



Why Python? Time Series 
Example

• Fill in missing values and normalize to start at 100


• Now display the US Standard & Poor and the German 
DAX


• Now annotate the plot and show it

values.spx.plot(label='S&P') 
values.dax.plot(label='DAX')

values.spx = values.spx.fillna(method = 'ffill')/values.spx['1994-01-07']*100.0 
values.dax = values.dax.fillna(method = 'ffill')/values.dax['1994-01-07']*100.0 

plt.title('S&P v DAX') 
plt.xlabel('date') 
plt.ylabel('Price') 
plt.legend() 
plt.show()



Why Python? Time Series 
Example

• Result:



Why Python? Time Series 
Example



Why Python? Time Series 
Example



Why Python? Time Series 
Example



Why Python
• Most of the programming was done for us


• Needed to invoke powerful method


• Majority of the code giving to small tweaks



IDLE
• IDLE is an interactive Python 

interpreter


• Can be used as a desk 
calculator


• Allows you to create new 
files



Variables and Types
• All program languages specify how data in memory 

locations is modified


• Python:  A variable is a handle to a storage location


• The storage location can store data of many types


• Integers


• Floating point numbers


• Booleans


• Strings



Variables and Types
• Assignment operator  =  makes a variable name refer to a memory 

location


• Variable names are not declared and can refer to any legitimate type

a 3.14156432

b “a string”

a = 3.14156432
b = “a string”

a = b

a 3.14156432

b “a string”

• Create two variables and assign 
values to them


• Variable a is of type floating point 
and variable b is of type string


• After reassigning, both variable 
names refer to the same value


• The floating point number is garbage 
collected



Expressions
• Python builds expression from smaller components just 

as any other programming language


• The type of operation expressed by the same symbol 
depends on the type of operands


• Python follows the usual rules of precedence


• and uses parentheses in order to express or clarify 
orders of precedence. 



Expressions
• Arithmetic Operations between integers / floating point 

numbers:


• Negation (-), Addition (+), Subtraction (-), Multiplication 
(*), Division (/), Exponentiation (**)


• Integer Division //


• Remainder (modulo operator) (%)



Expressions
• IF we use / between two integers, then we always get a 

floating point number


• If we use // between two integers, then we always get an 
integer


• a//b is the integer equal or just below a/b



Expressions
• Strings are marked by using the single or double 

quotation marks


• You can use the other quotation mark within the string


• Some symbols are given as a combination of a forward 
slash with another symbol


• Examples:  \t  for tab, \n for new line, \’ for apostrophe, 
\“ for double quotation mark, \\ for backward slash


• We’ll get to know many more, but this is not the topic 
of today



Expressions
• Strings can be concatenated with the +


• They can be replicated by using an integer and the * sign


• Examples:


• “abc"+"def"  —> 'abcdef'   

• ‘abc\"'+'fg'  —> 'abc"fg' 

• 3*”Hi'"  —>  “Hi'Hi'Hi'"



Change of Type
• Python allows you to convert the contents of a variable or 

expression to an expression with a different type but 
equivalent value


• Be careful, type conversation does not always work


• To change to an integer, use int( ) 

• To change to a floating point, use float() 

• To change to a string, use str( )



Example
• Input is done in Python by using the function input 

• Input has one variable, the prompt, which is a string


• The result is a string, which might need to get processed by 
using a type conversion (aka cast)


• The following prints out the double of the input (provided 
the user provided input is interpretable as an integer), first 
as a string and then as a number



Example
• Python does not understand 

English (or Hindi) so giving it 
a number in other than 
symbolic form does not help


• It can easily understand 
“123”


• It does not complain about 
the expression having the 
same type.



Conditional Statements
• Sometimes a statement (or a block of statements) should 

only be executed if a condition is true.


• Conditional execution is implemented with the if-
statement


• Form of the if-statement:

if Condition :

Statement
one
indent



Conditional Statements

• if  — is a keyword


• Condition: a Boolean, something that is either True or False


• Statement:  a single or block of statements, all indented 


• Indents are tricky, you can use white spaces or tabs, but not both.  
Many editors convert tabs to white spaces


• The number of positions for the indent is between 3 and 8, 
depending on the style that you are using. Most important, keep it 
consistent.

if Condition :

Statement
one
indent



Example

• First line asks user for integer input. 


• Second line checks whether user input is smaller than 5.


• In this case only, the program comments on the number.



Example

• Here we calculate the absolute value of the input. 


• The third line is indented.


• The fourth line is not, it is always executed. 



Example

• Here, lines 3 and 4 are indented and are executed if the 
input is a negative integer.


• The last line, line 5, is always executed since it is not part 
of the if-statement



Alternative statements
• Very often, we use a condition to decide which one of 

several branches of execution to pursue.


• The else-statement after the indented block of an if-
statement creates an alternative route through the 
program.



Alternative Statements
• The if-else statement has the following form:


• We add the keyword else, followed by a colon


• Then add a second set of statements, indented once


• If the condition is true, then Block 1 is executed, 
otherwise, Block 2.

if Condition :

Statement  Block 1
one
indent

else :

Statement Block 2
one
indent



Examples
• I can test equality by using the double = sign. 


• To check whether a number n is even, I take the 
remainder modulo 2 and then compare with 0.



Alternative Statements
• Often, we have more than two alternative streams of 

execution.


• Instead of nesting if expressions, we can just use the 
keyword “elif”, a contraction of else if. 



Alternative Statements

• One of the statement 
blocks is going to be 
executed


• The else block contains 
the default action, if 
none of the conditions 
are true

if Condition 1 :

Statement  Block 1
one
indent

else :

Statement Block n
one
indent

elif Condition 2 :

Statement  Block 2
one
indent

.

.

.



Alternative Statements
• Here, there is no else 

statement, so it is 
possible that none of 
the blocks is executed.

if Condition 1 :

Statement  Block 1
one
indent

elif Condition 2 :

Statement  Block 2
one
indent

.

.

.
elif Condition n :

Statement  Block n
one
indent



Examples
• Categorization of temperatures

if temperature < -25.0: 
    feeling = "arctic" 
elif temperature < -10.0: 
    feeling = "Wisconsin in winter" 
elif temperature < 0.0: 
    feeling = "freezing" 
elif temperature < 15.0: 
    feeling = "cold" 
elif temperature < 25.0: 
    feeling = "comfortable" 
elif temperature < 35.0: 
    feeling = "hot" 
elif temperature < 45.0: 
    feeling = "Ahmedabad in the summer" 
else: 
    feeling = "hot as in hell"



Boolean Expressions
• Nested loops to implement decision tree:

x<10

y<2 y<3

No Yes

result = 0 result = 1 result = 0

No Yes No

x<2

Yes

result = 1

No

result = 0

Yes

if x<10: 
    if y<3: 
        if x<2: 
            result=0 
        else: 
            result=1 
    else: 
        result=0 
else: 
    if y<2: 
        result=1 
    else result=0


