
Module 2: Loops
Thomas Schwarz, SJ

Repetition
• Computational model for kindergardeners

• We have a very large array of memory
locations

• The memory locations are variables

• A program consists of a series of
instructions

• A typical instruction c=a+b takes a value
from storage location a, a value from
storage location b, does a computation,
and stores in storage location c

CPU

3

5

a=3

b=5

c=8

2 8

Repetition
• Python variables are defined by assignment

• They are "strongly typed":

• E.g.: Operations depend on the type

• + between numbers: addition

• between strings: concatenation: 'नमस्ते'+' '+'दुिनया'

• * between numbers: multiplication, between integer
and string:

• The same variable name can refer to entities of different types
during the lifetime of a program

Repetition
• Assignment: "="

• a = 3*b/c

•Operators:

• Usually set: +, -, *, /, **

• Binary operators: ^, |, <<, >>, &, ~

• Unusual: // is integer division, % modulo operator

Repetition
• Conditional statements

• if, if else, if elif … else

• Unusual:

• White spaces form blocks

• No parenthesis around
conditions

if Condition 1 :

Statement Block 1
one
indent

else :

Statement Block n
one
indent

elif Condition 2 :

Statement Block 2
one
indent

.

.

.

Repetition
• Example: (Python has no switch statement)
 if temperature < -20:
 print('welcome to Minnesota in the winter')
 elif temperature < -10:
 print('I love Milwaukee in the winter')
 elif temperature < 0:
 print('be careful about driving')
 elif temperature < 10:
 print('Finally spring in Milwaukee')
 elif temperature < 20:
 print("It's getting hot")
 elif temperature < 30:
 print('normal')
 elif temperature < 45:
 print('when does monsoon start')
 elif temperature < 55:
 print("it's hot even for Ahmedabad")
 else:
 print('where are you living')

Repetition
• Python strings

• Python is very flexible about the encoding that you use

• Python-3 scripts should be written in utf-8

• Strings can be denoted by single or double quotation
marks

• Python is very good at interpreting what you mean
but sometimes escapes are necessary

Pep-8 style guidelines: https://www.python.org/dev/peps/pep-0008/

Conditions
• A condition is an expression that evaluates to True or

False

• This type is called Boolean

Boolean Expressions
• The simplest Boolean expressions are True and False

• The next simplest class are numerical comparators

• < smaller

• > greater

• == equals (Two! equal symbols)

• != not equals

• <= smaller or equal

• >= larger or equal

Boolean Expressions
• We can combine Boolean expressions using the logical

operands

• and

• or

• not

• If necessary, we can add parentheses in order to specify
precedence

Boolean Expression
Examples

• A program that decides whether user input is divisible by
2, but not by 3.

Boolean Expression
Example

• A program that checks whether the letter “a”, “A”, “e” or “E” is part of
user input.

• Python allows the keyword “in” to check for the presence of letters in
strings.

Short-Circuit Operators
• The value of an “or”- or “and” expression is evaluated

from the left to the right

• If the first operand of an “or” is True, then the second
operand is not evaluated and True is returned.

• This is because the value of the expression is already
known

• Similarly, if the first operand of an “and” expression is
False, then the second operand is not evaluated and
the value of the expression is False.

Conversion of other
expressions

• Any object can be tested for a truth value.

• The truth value of a non-zero number is True, otherwise False.

• Example:

• Since 5%2 evaluates to 1, it’s truth value is True and the
conditional statement (print(…)) is executed

• This behavior extends to other type of objects such as strings

• The empty string “” has truth value 0, every other string has
truth value 1.

Loops
• In CS: two types of for-loops

• Using an index as in C, C++, Java

• Using lists as in Lisp

• Python for loops iterate through an 'iterator'

* (loop for x in '(a b c d e)
 do (print x))

for(int i = 0; i < 10; i++)

Loops
• To repeat a block of statements, use

for i in range(n):

Block of StatementsIndent

Loops
• Range used to generate a list, but is now a generator

• Like a list, but values are generated only on demand

• range with a single variable: variable is the stop value

• range allows a start value:

• range allows a stride:

range(5) [0,1,2,3,4]

range(2,5) [2,3,4]

range(2,10,3) [2,5,8]

range(10,1,-3) [10,7,4]

Loops
• Examples:

• Calculate

• Use an accumulator to get the sum

100

∑
i=1

i2 = 12 + 22 + … + 992 + 1002

def sum_of_squares(limit : int) -> int:
 accu = 0
 for i in range(1, limit+1):
 accu += i*i
 return accu

Notice that the
sum includes 100

Loops
• Example: Count-down

for i in range(10, -1, -1):
 print(i)

10
9
8
7
6
5
4
3
2
1
0

Loops
• Calculating the factorial

 n! =
n

∏
i=1

i = 1 ⋅ 2 ⋅ 3 ⋅ … ⋅ (n − 1) ⋅ n

accu = 1
 for i in range(1, n+1):
 accu *= i
 return accu

Calculating Sums
• For loops are handy to calculate mathematical sums

• Geometric series:

• Calculate

• Determine iterator needs to run from 0 to 10
(inclusive)

• for i in range(11):

• Need to accumulate fractions in a sum

• Just don’t call it “sum”, because “sum” has
another meaning

1
20

+
1
21

+
1
22

+
1
23

+
1
24

+ … +
1

210

Calculating Sums

Calculating Sums
• Admittedly, we could have used Mathematics instead

• The sum is 1.1111111111 in binary.

• Add 1/2**10 or 0.0000000001 in binary and we
get 2.

• Thus, the sum is 2 - 1/2**10

Drawing Pictures
• We can use the index in

a for loop in order to
draw contours

• The trick is to use
string repetition
instead of drawing
each line separately.

Drawing
Pictures

While Loops
• Form of the while loop:

• Keyword is while

• Condition needs to evaluate to either True or False

• Condition is a boolean

while condition :
Statement Block

Indent

While Loop Conditions
• Statement block is executed as long as condition is valid.

• Allows the possibility of infinite loops

while condition :
Statement Block

Indent

Apple Inc.
One Infinite Loop
Cupertino, CA 95014
(408) 606-5775

An Infinite Loop
while True:

print(“Hello World”)

If this happens to you, you might have to kill Idle process.

While Loops can emulate
for loops

• Find an equivalent while loop for the following for-loop

• (which calculates)
n

∑
ν=1

1
ν

n = int(input("Enter n: "))
suma = 0
for i in range(1,n+1):
 suma += 1/i
print("The", n, "th harmonic number is", sum)

While loops can emulate for
loops

• Solution: the loop-variable i has to start out as 1 and then
needs to be incremented for every loop iteration

• We stop the loop when i reaches n+1, i.e. we continue as
long as i <= n.

n = int(input("Enter n: "))
sum = 0
i = 1
while i<= n:
 sum += 1/i
 i += 1
print("The", n, "th harmonic number is", sum)

Harmonic Numbers
• The nth harmonic number is

• It is known that this series diverges.

• Given a positive number x, we want to determine n such
that the nth harmonic number is just above x

• Solution: add while you have not reached x

hn =
n

∑
ν=1

1
ν

min({n |hn > x})

1
ν

Harmonic Numbers

• When we stop, we need to undo the last increment of nu,
but not for sum.

x = float(input("Enter x: "))
nu = 1
sum = 0
while sum <= x:
 sum += 1/nu
 nu += 1
print("The number you are looking for is ", nu-1,
 "and incidentally, h_n =“, sum)

Breaking out of a while loop
• You break out of a while loop, if the condition in the while

loop is False

• Or by using a statement

• break breaks out of the current loop

• Can be used in for loops as well

• A related statement is the continue statement

• continue breaks out of the current iteration of the
loop and goes to the next

• We’ll learn them in the course of the classes.

Example
• Find a number that fulfills the following congruences

• This is Sun-Tsu’s problem and the Chinese
Remaindering Theorem in Mathematics helps with
solving these problems.

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Example
• We try out all numbers between 1 and

• We check each number whether they fulfill the congruences

• If we find one, we print it out and break out of the while
loop.

3 × 5 × 7

x = 1
while x < 3*5*7:
 if x%3==2 and x%5==3 and x%7==2:
 print(x)
 break
 x += 1

While Loops

• break: stop the execution of the loop

• continue: stop the execution of the current iteration and
go back to the evaluation of the loop condition

• (Stupid) Example: Print out all even numbers from 1 to
100

for i in range(1, 101):
 if i%2==1:
 continue
 print(i)

While Loops

• A frequent pattern:

• Have an infinite while loop

• Break out if a certain condition is true

While Loops

• Else clause (an example that Python is not perfect)

• Executed if a break is not taken

while

else :

condition :

break

While Loops

• Else clause example:

• Notice: 'else' belongs to the inner for, not the if statement

for n in [2,3,4,5,6,7,8,20,21,22,23,24]:
 for p in range(2, n):
 if p*(n//p) == n: # p devides n
 print(n,'=', p, '*', n//p)
 break
 else:
 print(n, 'is prime')

