
Strings in Python
Thomas Schwarz, SJ

Strings
• Basic data type in Python

• Strings are immutable, meaning they cannot be shared

• Why?

• It’s complicated, but string literals are very
frequent. If strings cannot be changed, then
multiple occurrences of the same string in a
program can be placed in a single memory
location.

• More importantly, strings can serve keys in key-
value pairs.

String Literals
• String literals are defined by using quotation marks

• Example:

• To create strings that span newlines, use the triple
quotation mark

Escapes
• Python is very good at detecting your intentions when

processing string literals

• E.g.: "It's mine"

• Still sometimes need to use the escape character

• \t, \n, \", \', \\, \r

• \xhh —> character with hex value 0xhh

• Python 3 uses machine conventions for endings

• Python 3 uses utf-8 natively

• greetings = ("शुभ प्रभात", "સુ#ભાત", "शुभ प्रभात")

Docstrings
• Doc strings

• String literals that appear as the first line of a module,
function, class, method definition

• All these items should have a docstring

• The docstring replaces the help string in Idle and
IPython/Jupyter

• Indent them under the indentation of the object they
describe

Docstrings
• Always use triple quotation marks

• Even for one-liners

Docstrings
• Example

String Methods
• Strings are classes and have many built in methods

• s.lower(), s.upper() : returns the lowercase or
uppercase version of the string

• s.strip(): returns a string with whitespace removed
from the start and end

• s.isalpha() / s.isdigit() / s.isspace()
tests if all the string chars are in the various character
classes

• s.startswith('other'), s.endswith('other')
tests if the string starts or ends with the given other string

String Methods
• There are a number of methods for strings. Most of them

are self-explaining

• s.find('other') : searches for the given other
string (not a regular expression) within s, and returns the
first index where it begins or -1 if not found

• s.replace('old', ‘new'): returns a string where
all occurrences of 'old' have been replaced by 'new'

• len(s) returns the length of a string

Strings and Characters
• Python does not have a special type for characters

• Characters are just strings of length 1.

Accessing Elements of
Strings

• We use the bracket notation to gain access to the
characters in a string

• a_string[3] is character number 3, i.e. the fourth
character in the string

String Processing
• Since strings are immutable, we process strings by

turning them into lists, then processing the list, then
making the list into a string.

• String to list: Just use the list-command

String Processing
• Turn lists into strings with the join-method

• The join-method has weird syntax

• a_string = "".join(a_list)

• The method is called on the empty string ""

• The sole parameter is a list of characters or strings

• You can use another string on which to call join

• This string then becomes the glue
gluestr.join([str1, str2, str3, str4, str5])

str1 str2 str3 str4 str5gluestr gluestr gluestr gluestr

String Processing
• Examples

String Processing
• Procedure:

• Take a string and convert to a list

• Change the list or create a new list

• Use join to recreate a new string

• Alternative Procedure:

• Build a string one by one, using concatenation (+ -operator)

• Creates lots of temporary strings cluttering up memory

• Which is bad if you are dealing with large strings.

String Processing
• Example: Given a string, change all vowels to increasing

digits.

• This is used as a (not very secure) password generator

• Examples:

• Wisconsin —> W1sc2ns3n

• AhmedabadGujaratIndia —>
1hm2d3b4dG5j6r7t8nd90

String Processing
• Implementation:

• Define an empty list for the result

• We return the result by changing from list to string

def pwd1(string):
 result = []

 return "".join(result)

String Processing
• Need to keep a counter for the digits

def pwd1(string):
 result = []
 number = 1

String Processing
• Now go through the string with a for statement

• Create the list that will be returned converted into a string

def pwd1(string):
 result = []
 number = 1
 for character in string:

#append to result here

 return "".join(result)

String Processing
• We either append the letter from the string or we append

the current integer, of course cast into a string

def pwd1(string):
 result = []
 number = 1
 for character in string:
 if character not in "aeiouAEIOU":
 result.append(character)
 else:
 result.append(str(number))
 number = (number+1)%10
 return "".join(result)

String Processing
• Argot

• A variation of a language that is not understandable to
others

• E.g. Lufardo — an argot from Buenos Aires that uses
words from Italian dialects

• Invented originally to prevent guards from
understanding the inmates

• Some words are just based on changing words

• vesre - al reves (backwards)

• chochamu - vesre for muchacho (chap)

• lorca - vesre for calor (heat)

String Processing
• Argot

• Pig Latin

• Children’s language that uses a scheme to change
English words

• Understandable to practitioners, but not to those
untrained

String Processing
• Argot:

• Efe-speech

• A simple argot from Northern Argentina no longer in
use

• Take a word: “muchacho”

• Replace each vowel with a vowel-f-vowel
combination

• “Muchacho” becomes Mufuchafachofo

• “Aires” becomes “Afaifirefes”

String Processing
• Implementing efe-speech

• Walk through the string, modifying the result list

def efe(string):
 result = []
 for character in string:
 result.append(SOMETHING)
 return "".join(result)

String Processing
• We need to be careful about capital letters

• We can use the string method lower

• Which you find with a www-search

def efe(string):
 result = []
 for character in string:

 elif character in "AEIOU":
 result.append(character+'f'+character.lower())

 return "".join(result)

String Processing
def efe(string):
 result = []
 for character in string:
 if character in "aeiou":
 result.append(character+'f'+character)
 elif character in "AEIOU":
 result.append(character+'f'+character.lower())
 else:
 result.append(character)
 return "".join(result)

String Processing

Try it out:
• Implement pig latin

• Use wikipedia

• Use testing

Slices
• We already know two sequence types: lists and strings

• Sequences can be sliced: A slice is a new object of the
same type, consisting of a subsequence

• Use a bracket cum colon notation to define slices.

• sequence[a:b] are all elements starting with index a and
stoping before index b.

Slices
• String slices

• Number before colon:

• Start

• Number after colon:

• Stop

• Default value before colon:

• Start with first character

• Default value after colon

• End with the string

Slices
• String slices:

• Optional third parameter is
Stride

• First character is
character 1

• Next one is character 1+2

• Next one is character
1+2+2

• Next one would be
character 1+2+2+2, but
that one is >= the stop
value.

M i l w a u k e e

0 1 2 3 4 5 6 7 8

a_string

a_string[1:7:2] i w u

start value is index 1

stop value is index 7

stride is 2

Slices
• Negative strides are allowed.

• Create a new string that is reversed using default
values

Slices
• Negative strides are allowed

• Character 20 is “I” of India

• Next character is 17, the “t” in Gujarat

• Stop before character 3 (the fourth character)
Ahmedabad, Gujarat, India

Lists and Strings
• Both lists and strings are sequences

• Length: len(a_string), len(a_list)

• Concatenation: a_string + b_string, a_list + b_list

• Repetition: 3*a_string, 3*a_list

• Membership: if ‘x’ in a_string, if a in a_list

• Iteration: for ele in a_string, for ele in a_list

Lists and Strings
• Strings are immutable

• Lists are mutable

a_string[2] = ‘x’

a_list[2] = ‘x’

Try it out
• Write a function that determines whether a word is a

palindrome (spelled forward the same as backward)

• Write a function that checks whether two words are
anagrams (have exactly the same letters).

• Hint: Without counting letters, you just create an
ordered list of the letters in each word

• For extra credit: remove all non-letters

• Use string.ascii_letters

• We really need to learn how to format strings
• Python has made several attempts before settling

on an efficient syntax.
• You can find information on the previous solutions

on the net.
• Use the format function

• Distinguish between the blueprint
• and the string to be formatted
• Result is the formatted string.

Formatting Strings

• Blueprint string
• Uses {} to denote places for variables
• Simple example

• "{} {}".format('one', ‘two')

• Result

Blueprint
Calling
format

String to be
formatted

‘one two’

Formatting Strings

• Inside the brackets, we can put indices to select
variables
• 0 means first variable, 1 second, …
• Can reuse variables

Formatting Strings

• Additional formatting inside the bracket after a
colon

• Can assign the number of characters to print out

• Default alignment is to the left

Formatting Strings

• Use ^ to center
• Use < to left-align
• Use > to right-align

Formatting Strings

• Numbers are handled without specifying format
instructions.

• Or we can insist on special types
• Use s for string
• Use d for decimal
• Use f for floating point
• Use e for floating point in exponential notation

Formatting Strings

Formatting Strings
• By specifying “f” we ask for floating point format

• By specifying “e” we ask for scientific format

• Padding
• If the variable needs more space to print out, it

will be provided automatically

• This is actually the longest officially recognized
word in English

Formatting Strings

• Padding:
• On the reverse, we can give the number of

significant digits after a period

• We only want to keep two decimal digits after the
period

• But use a total of 8 spaces for the number.

Formatting Strings

• Escaping curly brackets:
• If we want to write strings with format containing

the curly brackets “{“ and “}”, we just have to
write “{{“ and “}}”

• A single bracket is a placeholder, a double curly
bracket is a single one in the resulting string.

Formatting Strings

Application: Pretty
Printing

• Develop a mortgage payment plan
• Accountants have formulae for that, but it is fun to do it

directly
• Assume you take out a loan of L$ dollars

• The loan is financed at a rate of r% annually
• Interest is paid monthly, i.e. at a rate of r/12%

• Each month you make a repayment
• Part of the repayment is to pay the interest
• The remainder pays down the debt

• Use a while-loop
• Condition is that there is still an outstanding debt
• Adjust outstanding debt
• Count the number of payments

• Need to initialize values

Mortgage Payments

• We need values for:
• Monthly Rate (interest in percent)/1200
• Principal
• Repayment

• Get those from the user
• A true application would contain code that

checks whether these numbers make sense.

Mortgage Payments

• Initialization

Mortgage Payments

princ = float(input("What is the prinipal “))
rate = float(input("What is the interest rate (in percents)? "))/1200
print("Your minimum rate is ", rate*princ)
paym = float(input("What is the monthly payment? “))
month = 0

• We continue until we paid down the principal to
zero

Mortgage Payments

while princ > 0:

• Update the situation in the while loop
• Last payment does not need to be full, so we

calculate it

Mortgage Payments

intpaid = princ*rate
princ = princ + princ*rate - paym
if princ < 0:
 lastpayment = paym + princ
 princ = 0
month += 1

Put things together

Pretty-Printing Tables
• Format Strings revisited:

• Format string — blueprint
• Uses { } to denote spots where variables get

inserted

Pretty-Printing Tables
• Syntax

• {a:^10.3f}
• a — the number of the variable

• Can be left out
• : — what follows is the formatting instruction
• 10 — number of spaces for the variable
• . — what follows is the precision
• 3 — precision
• f — print in floating point format

Pretty-Printing Tables
• If the variable is larger than the space given:

• Full value is printed out
• Alignment by default is

• left (<) for strings
• right (>) for numbers

Pretty-Printing Tables
• Task:

• A program that gives a table for the log and the
exponential function between 1 and 10

• Hint: x=1+i/10 x | exp(x) | log(x)

 1.00 | 2.71828 | 0.00000
 1.10 | 3.00417 | 0.09531
 1.20 | 3.32012 | 0.18232
 1.30 | 3.66930 | 0.26236
 1.40 | 4.05520 | 0.33647
 1.50 | 4.48169 | 0.40547
 1.60 | 4.95303 | 0.47000
 1.70 | 5.47395 | 0.53063

Why another formatting
method

• The format method allows very fine-grained control

• But it is verbose

• Python has two type of special strings:

• r-strings for raw strings: no escapes

• f-strings for formatting

• Using f-strings results in more compact and readable
code

f-strings
• f-strings are defined with a pair of quotation marks

preceded immediately by an “f” or “F”

• An f-string can contain a variable name surrounded by
brackets in its definition

• The bracket is then replaced by the value of the variable

fstring = f'hello world'

f-strings
• Example:

• Variable fstring is then

number = 6.35
astring = “hello"
fstring = f"{astring}, the number is {number}"

'hello, the number is 6.35'

f-strings
• The expression in brackets inside an f-string gets

evaluated at run time.

• For example, we can say

• or

which evaluates to

f"{2+3*4}"

astring = “hello"
string = f"{astring.upper()} World"

'HELLO World'

r-strings
• Because of their similarity with f-strings, we mention r-

strings

• An r-string uses the escape character only as an escape
character, so there is no escaping at all

• This is useful for strings containing the backslash such
as Windows file names

address = r"c:\Windows\System32\system.ini"

