
Web Scraping
Thomas Schwarz, SJ

Important Preliminaries
• On your own machine:

• Install pip3 (the python 3 version)

• You can invoke pip3 also by python3 -m pip

• Then install a number of packages:

• pandas

• sudo python3 -m pip install pandas

• beautifulsoup4

• sudo python3 -m pip install beautifulsoup4

• requests

Scraping and Crawling
• Both involve automatic ('bot') access to a web-site

• Crawling tries to find and process all the information on all
pages of the website

• Typically used by search engines

• Scraping

• Used to obtain data contained in certain web-pages

Legal and Ethical Issues
• Web-scrapping is sometimes considered a threat

• Because it creates real problems

• Because it accesses data for use against the business
interests of the web service provider

Legal and Ethical Issues
• Web-scraping can run afoul of:

• Existing and future laws

• In the US:

• Computer Fraud and Abuse Act, Digital Millennium
Copyright Act,

• Terms of Use / Breach of Contract e.g. those in
robots.txt

• Copyright

• ...

Legal and Ethical Issues
• robots.txt gives conditions for automatic crawling

• No crawling:

• All crawling allowed:

• Block twitbot from crawling the indicated directory

User-agent: *
Disallow: /

User-agent: *
Disallow:

User-agent: twitbot
Disallow: /mysecrets/

Legal and Ethical Issues
• robots.txt

• Needs to be called that (not Robots.txt)

• Needs to be placed in the top-level of the hierarchy

• needs to be publicly available

• subdomains will have to use separate robots files

• Can be used to provide a sitemap for crawlers (so that
search engines will show your content)

• Sitemap: https://www.mysite.com/sitemap.xml

Legal and Ethical Issues
• Aggressive scraping (and crawling) can become a Denial

of Service Attack

• Server busy to answer scraping demands and cannot
serve other traffic

• robots.txt can specify a desired back-off interval

• In general: do not access web-pages on a site
without an interval of at least 10 seconds

Legal and Ethical Issues
• Many sites provide APIs in order to allow users to make

bulk-downloads of data

• This usually means they do not want to have their site
scraped, so they offer a simpler alternative

Legal and Ethical Issues
• Raw data is not protected by copy-right

• Exceptions can arise when scraping is used to obtain the
same functionality as the original site

• Scraping needs to be done at a low level of intensity

• Using an agent that sends identifying information with
each request is useful

• Security pouring over logs can be put at ease with an
explanation

Legal and Ethical Issues
• Websites are free to ban robots by using a black-list for IP

addresses

• Commercial crawling solutions exists that circumvent
banning

• Imitate human user behavior

• Use many different IP addresses

• Automatic throttling of requests

• The need and the existence of these automated crawlers
show that:

• Scraping is in a legal and ethical gray-zone

Techniques
• To download data from a website and prepare it for

processing

• We need to access the website

• We need to find the data on the website and put it into
a structure we can use

• Before we code, we need to first understand the source
of the website

• After we obtained the data, we need to store it in a
reasonable format

Understanding Web Sites
• Access the target website

• Use the developer tools or view the source

• Browser dependent

Understanding Web Sites
• Milwaukee police maintains a website with current call

data

• https://itmdapps.milwaukee.gov/MPDCallData/

• Goal is to download this data

• Use the "Show Source Functionality" of your browser
on the website

Understanding Web Sites
<!DOCTYPE HTML>

<html>

<head>
 <title>Milwaukee Police Department: Call for Service</title>
 <meta http-equiv='X-UA-Compatible' content='IE=edge'>
 <meta name='viewport' content='width=device-width, initial-scale=1'>
 <link rel='stylesheet' href='/ItmdScripts/css/redesign.css'
type='text/css'/>
 <link rel='stylesheet' href='/ItmdScripts/css/city-various.css'
type='text/css'/>
 <script src='/ItmdScripts/js/jquery.min.js'></script>
 <script src='/ItmdScripts/js/message.js'></script>
 <script src='/ItmdScripts/js/mil-default.js'></script>
</head>
<body>
 <div id='bg-div'>
 <div data-role='page' class='main'>
 <div data-role='header' class='redesign-header'>

 <img alt='City of Milwaukee' src='//
itmdapps.milwaukee.gov/templates/2014/city2013_logo.png'/>

Understanding Web Sites
• Identify the data that we would like to extract

• In this case, data in a table

<tr style='border-style: none; border-collapse: collapse;'>
 <td style='border: 1px solid black;
border-collapse: collapse;'>201731019</td>
 <td style='border: 1px solid black;
border-collapse: collapse;'>06/21/2020 11:54:25 AM</td>
 <td style='border: 1px solid black;
border-collapse: collapse;'>6000 W SILVER SPRING DR,MKE</td>
 <td style='border: 1px solid black;
border-collapse: collapse; text-align: center;'>4</td>
 <td style='border: 1px solid black;
border-collapse: collapse;'>PATROL</td>
 <td style='border: 1px solid black;
border-collapse: collapse;'>Assignment Completed</td>
 </tr>

Understanding Websites
• Before we start downloading websites, let's first

understand them

• Each web browser has a way to view the source of a
website

• On Chrome, use Developer -> View Source

• Easiest tool for web development

Accessing web sites
• Selenium: Module for automatic web application tests

• Automatically click links, pretend to be a certain
browser, etc

• Useful when data is accessed after ajax requests

• Needs some downloads

Accessing Website
• Scrapy:

• Framework to run scraping and web crawling

• Developed by web-aggregation and e-commerce
company Mydeco

• Maintained by Scrapinghub

• Interlaced with a commercial offering

Accessing websites
• Requests

• Simple and basic translator for making url requests

• r = requests.get(address)

• Variable r.content now contains the contents of the
web page (as a binary string)

• Variable r.text contains the contents as a string

• Requests will guess the encoding

• But you can set the encoding with

• response.encoding = 'utf-8'

Accessing websites
• Requests

• Can use r.headers to obtain a dictionary-like object
with various header values

• Can use query string in requests:

• Example:
requests.get('https://api.github.com/search/rep',
 params=[('q', 'requests+language:python')])

requests.put('https://httpbin.org/put',
data={'key':'value'})

Accessing Websites
• Use regular expression (just a little bit)

• Use beautiful soup (html parser)

• Use requests

Regular Expressions
Python

Why
• A frequent programming task is “filtering”

• Retain only those records that fit a certain pattern

• Typical part of big data and analytics applications

• Example for text processing

Why
• Whenever you deal with text processing

• Think about whether you want to use regular
expressions

Why
• Regular Expressions are a theoretical concept that is well

understood

• Many programming languages have a module for regular
expressions

• Usually, very similar syntax and semantics

• We can use ad hoc solutions, but regular expressions are
almost always faster

How
• Usually, we want to compile a regular expression

• This allows for faster scanning

• Compilation cost time

• But usually amortized very quickly

• Python regular expressions are in module re

• Use p=re.compile('?')

• Where the question mark is the search string

How
• A Python regular expression is a string that defines the

search

• The string is compiled

• After compilation, a match, search, or findall is performed
on all strings

• The output is None if the regular expression is not
matched

• Otherwise, depending on the function, it provides the
parts of the string that match

A first example
• In a regular expression, most characters match

themselves

• Unless they are “meta-characters” such as *, \, ^

• E.G.: Find all lines in “alice.txt” with a double hyphen

• Regular expression is '--'

• Read in all lines of the text file, find the ones that match

• Need to use search, because match only matches at
the beginning of a string

A first example
• Import re

• Compile the
regular expression

• Match lines
with .search()

import re

p = re.compile('--')

def match1():
 with open("alice.txt") as infile:
 line_count = 0
 for line in infile:
 line_count+=1
 line = line.strip()
 if p.search(line):
 print(line_count, line)

Using raw strings
• A raw string is a string preceeded with a letter r:

• print(r'Hello World')

• The difference to a normal string is that the escape
character always means the escape character itself.

• print(r'\tHello') prints out \tHello

• print('\tHello') prints out Hello after a tab.

• This can be very useful because we might on occasion
have to escape the escape character several times.

Matching
• Characters are the easiest to match

• Find all words in lawler.txt (a large list of English words) with
a double “oo”

• Just change the expression

• import re

p = re.compile('oo')

def match1():
 with open("lawler.txt") as infile:
 line_count = 0
 for line in infile:
 line_count+=1
 line = line.strip()
 if p.search(line):
 print(line_count, line)

Matching
• Letters and numbers match themselves

• But are case sensitive

• Punctuation marks often mean something else.

Matching
• Square brackets [] mean that any of the enclosed

characters will do

• Example: [ab] means either 'a' or 'b'

• Square brackets can contain a range

• Example: [0-5] means either 0, 1, 2, 3, 4, or 5

• A caret ^ means negation

• Example: [^a-d] means neither 'a', 'b', 'c', nor 'd'

Self Test
• Find all lines in a file that have a double 'e'

Self Test Solution

import re

p = re.compile(r'ee')

def match_ee(filename):
 with open(filename) as infile:
 for line in infile:
 if p.search(line):
 print(line.strip())

Self Test 2
• Find all lines in a file that have a double-'ee' followed by a

letter between 'l' (el) and 'n'

Self Test 2 Solution
import re

p = re.compile(r'ee[l-m]')

def match_ee(filename):
 with open(filename) as infile:
 for line in infile:
 if p.search(line):
 print(line.strip())

The only difference is in the regular expressions where

we have now a range of letters.

Matching: Wild Cards
• Wild Card Characters

• The simplest wild card character is the period / dot: “.”

• It matches any single character, but not a new line

• Example: Find all English words using Lawler.txt that
have a patterns of an “a” followed by another letter
followed by “a”

• Solution: Use p = re.compile('a.a')

Matching: Wild Cards
• If you want to use the literal dot '.' you need to escape

it with a backslash

• Example: To match “temp.txt” you can use 't...\.txt'

• This matches any file name that starts with a t, has
three characters afterwards, then a period, and then
txt.

Matching: Repetitions
• The asterisks repeats the previous character zero or more

times

• Example: '\.[a-z]*' looks for a period, followed by
any number of small letters, but will also match the simple
string '.'

• The plus sign repeats the previous character one or more
times.

• Example: 'uni[a-z]+y' matches a string that starts
with 'uni' followed by at least one small letter and
terminating with 'y'

• This is difficult to read, as the + looks like an operation

Matching: Repetitions
• Braces (curly brackets) can be used to specify the exact

number of repetitions

• 'a{1:4}' means one, two, three, or four letters 'a'

• 'a{4:4}' means exactly four letters 'a'

Self Test
• Print all file names in a directory that look like a Python

file.

• Notice that ".py" is not a valid Python file. There must
be something before the dot.

Self Test Solution

def get_python(dir_name):
 python = re.compile('.+\\.py')
 lista = os.listdir(dir_name)
 for name in lista:
 if python.match(name):
 print(name)

Matching
• \w stands for any letter (small or capital) or any digit

• \W stands for anything that is not a letter or a digit

• Example: Matching “n”+non-letter/digit+”t”

• p = re.compile(’n\\Wt')

• We need to double escape the backslash using normal
Python strings

• p = re.compile(r’n\Wt')

• Or use a “raw string” (with an “r” before the string)

• In a raw string, the backslash is always a backslash

"Speak English!" said the Eaglet. "I don't know the meaning of half
They were indeed a queer-looking party that assembled on the bank

Matching
• \s means a white space, newline, tab

• \S means anything but a white space, newline, or tab

• \d matches a digit

• \t matches a tab

• \r matches a return

Regular Expression
Functions

• Once compiled a regular expression can be used with

• match() matches at the beginning of the string and
returns a match object or None

• search() matches anywhere in the string and returns
a match object or None

• findall() matches anywhere in the string and does
not return a match object

Match Objects
• A match object has its own set of methods

• group() returns the string matched by the regular
expression

• start()returns the starting position of the matched
string

• end()returns the ending position

• span()returns a tuple containing the (start, end)
positions of a match

Regular Expression Gotcha
• Regular expression matching is greedy

• Prefers to match as much of the string as it possibly
can

• Example:

• Prints out

p3 = re.compile(r'.+\.py')
print(p3.search("This file, hello.py and this file
world.py are python files"))

<re.Match object; span=(0, 42), match='This file,
hello.py and this file world.py'>

Non-Greedy Matching
• We can use the question mark qualifier to obtain a non-

greedy match.

• p = re.compile('o.+?o')

• Finds all non-overlapping, minimal instances

Advanced Topics
• In this module we only scratched the surface.

• There is excellent online documentation if you need more
information

• But this should be sufficient to do simple tasks such as
data cleaning and web scraping

Webscraping with
BeautifulSoup

Thomas Schwarz, SJ

Beautiful Soup
• Module developed for parsing web-pages

• Current version is called bs4

• from bs4 import BeautifulSoup

Beautiful Soup Installation
• Easy installation with pip

• Just remember that you need to install it for the correct
Python version

HTML in Five Minutes
• HTML is a markup language

• Tags < > are used to delimit elements

• HTML documents start out and end with an <html> </
html> tag

• HTML documents consists of two parts:

• Head: <head> </head>

• Body: <body> </body>

• Head: Information on the page

• Body: The page itself

HTML in Five Minutes
• Basic html elements:

• Text header <h1></h1>, ... <h6></h6>

• Paragraphs <p></p>

• Links <a> anchors

• Images <im> </im>

• Lists

• Dividers <div>

• Spans

HTML in Five Minutes
• Often, tags have metadata embedded.

• Example:

• Schwarz

• A link with a property href set

• An ordered list using capital letters as numbers

• <ol type = "A">

Beautiful Soup Parser
• Start out by creating a Beautiful Soup object

• Need to have a parser attached

• Standard is the html parser

import requests
from bs4 import BeautifulSoup

r = requests.get(url)
soup = BeautifulSoup(r.content, 'html.parser')

Beautiful Soup Parser
• We can use prettify() in order to find print out the

contents of the beautiful soup obejct.

• Step 1: Import the modules

• Step 2: Scrape

• Step 3: Display the contents

from bs4 import BeautifulSoup
from requests import get

def scrape():
 return get('https://tschwarz.mscs.mu.edu')

def display():
 soup = BeautifulSoup(scrape().content,
 features = 'html.parser')
 print(soup.prettify())

Beautiful Soup Parser
• The 'html.parser' comes with Python

• There are a number of other parsers that can be installed

• See the BeautifulSoup/bs4 documentation

BeautifulSoup Objects
• An html tag defines an html element

• We can access tag elements from within BeautifulSoup

• The first tag element can be accessed just by using the
tag

• Example: Getting the first li tag on my website:

import requests
from bs4 import BeautifulSoup

soup = BeautifulSoup(ts.content, 'html.parser')
print(soup.li)

Beautiful Soup Objects
• HTML tags have names

• <a> (anchor) tag has name a

• <p> (paragraph) tag has name p

• HTML tags have attributes

• class, id, style, ...

Beautiful Soup Objects
• Getting the name of a tag:

• We could actually change the name of a tag and thereby
beautiful soup parse tree

import requests
from bs4 import BeautifulSoup

soup = BeautifulSoup(ts.content, 'html.parser')
li_tag = soup.li
print(li_tag.name) # prints out li

Beautiful Soup Objects
• Getting attributes of a tag

• In the example, the li - tag has an anchor inside.

• We can get to the anchor

• The attributes are in a dictionary

Beautiful Soup Objects
• Example

• Prints out

• Attributes are in a dictionary:

• and accessible directly

print(li_tag.a)

<a class="tab_active" href="index.html"
target="_self">Home

>>> print(li_tag.a.attrs)
{'class': ['tab_active'], 'href': 'index.html',
 'target': '_self'}

>>> print(li_tag.a['class'])
['tab_active']

Beautiful Soup Objects
• To get to the text in a tag, use .string

>>> print(li_tag.a.string)
Home

Searches in Beautiful Soup
• To search within a BeatifulSoup object, we can use

• find

• Only finds first occurrence

• find_all

• Returns a list of occurrences

Searches in Beautiful Soup
• Find can use

• a tag , e.g. an anchor

• a text string or a regular expression

• Careful: You are looking for the exact string.

soup.find('a') soup.find(name = 'a')

>>> mke = soup.find(text = re.compile('Milwaukee'))
>>> mke
'Milwaukee Police Department: Call for Service'
>>> mke = soup.find(text = 'Milwaukee')
>>> print(mke)
None

Searches in Beautiful Soup
• Find can use attributes of tags

• Generic: Use attrs parameter with a dictionary

>>> footer = soup.find(attrs={'class' : "footer"})
>>> footer
<div class="footer" data-role="footer">Mayor Tom Barrett</
a><a href="http://city.milwaukee.gov/
CommonCouncil">Common Council<a ...

Searches in Beautiful Soup
• Can use find with a function

• Function is boolean, i.e. returns True or False

Searches in Beautiful Soup
• find_all works like find, but returns a list of results

• In addition, limit=n limits the list to the first results

Case Study: MPD
• Go to https://itmdapps.milwaukee.gov/MPDCallData/ and

save the file

• We do not want to upset the police

Case Study: MPD
• First, we use beautiful soup to show us the file:

• This is just a nicer version of the html file

• The call data is in a single table

def prob3():
 with open('mpd.html') as mpd:
 soup = BeautifulSoup(mpd, 'html.parser')
 print(soup.prettify())

Case Study: MPD
• Now let's find all tables: Look for tr

def prob4():
 with open('mpd.html') as mpd:
 soup = BeautifulSoup(mpd, 'html.parser')
 results = soup.find_all('tr')
 for item in results:
 print('an item:')
 print(item)
 print()

Case Study: MPD
• This gives us lots of tables, some belonging to navigation

and some belonging to what we are looking for

• The good stuff is the third item in the list

an item:
<tr style="border-style: none; border-collapse: collapse;">
<td style="border: 1px solid black; border-collapse: collapse;">201731676</td>
<td style="border: 1px solid black; border-collapse: collapse;">06/21/2020 04:56:37 PM</td>
<td style="border: 1px solid black; border-collapse: collapse;">2423 S 6TH ST,MKE</td>
<td style="border: 1px solid black; border-collapse: collapse; text-align: center;">2</td>
<td style="border: 1px solid black; border-collapse: collapse;">TRBL W/SUBJ</td>
<td style="border: 1px solid black; border-collapse: collapse;">Advised</td>
</tr>

Case Study: MPD
• First, let's restrict ourselves to the good stuff

def prob5():
 with open('mpd.html') as mpd:
 soup = BeautifulSoup(mpd, 'html.parser')
 results = soup.find_all('tr')[2:] #use slicing
 return results

Case Study: MPD
• Then inside these results, let's look for the columns (td)

def prob6():
 with open('mpd.html') as mpd:
 soup = BeautifulSoup(mpd, 'html.parser')
 results = soup.find_all('tr')[1:]
 for r in results:
 print('\n')
 for e in r.find_all('td'):
 print(e)

Case Study: MPD
• Now we can take out the contents

• Strategy:

• For each row create a dictionary

• Use

• to parse the date time

from dateutil.parser import parse

Case Study: MPD
def prob7():
 findall = []
 with open('mpd.html') as mpd:
 soup = BeautifulSoup(mpd, 'html.parser')
 results = soup.find_all('tr')[2:]
 for r in results:
 entries = [e.contents[0] for e in
r.find_all('td')]
 datetime = parse(entries[1])
 dicti = { 'id': entries[0],
 'datetime': datetime,
 'address': entries[2],
 'district': entries[3],
 'descr': entries[4],
 'status': entries[5]}
 findall.append(dicti)
 return findall

Case Study: MPD
• Finally, can create a data frame

data = pd.DataFrame(prob7())

>>> data.head()
 id datetime ... descr status
0 201731692 2020-06-21 17:04:39 ... TRAFFIC HAZARD Assignment Completed
1 201731630 2020-06-21 17:03:42 ... ACC PDO Service in Progress
2 201731573 2020-06-21 17:03:09 ... FAMILY TROUBLE Advised
3 201731601 2020-06-21 17:02:26 ... THREAT Service in Progress
4 201731683 2020-06-21 17:02:05 ... ACC PI Service in Progress

Case Study: Finding Links
• Let's use request in order to do some web-navigation

• Target is my web-site:

• https://tschwarz.mscs.mu.edu/Classes/

• We just beat up on this one

Case Study: Finding Links
• First step:

• Store addresses in global constant

• Use the class Gl trick

class Gl:
 site = 'https://tschwarz.mscs.mu.edu/Classes'
 file = 'classes.html'
 regex_headers = re.compile(r'<h.>.*?</h.>')
 regex_links = re.compile(r'href=".*?"')
 regex_div = re.compile(r'<div.*?>')

Case Study: Finding Links
• Second step:

• Download the page

def get_links(site=Gl.site, file=Gl.file):
 webpage = requests.get('/'.join([site, file])).text

Case Study: Finding Links
• Third step:

• Find all links

• Links use the construct

class Gl:
 regex_links = re.compile(r'href=".*?"')

Case Study: Finding Links
• Third step:

• This will give us exactly the links as a list
['href="../style.css"', 'href="../style_extra.css"',
'href="../index.html"', 'href="../cv.html"',
'href="publications.html"', 'href="classes.html"',
'href="PDS/index.html"', 'href="Algo2020/index.html"',
'href="AlgoF2020/index.html"', 'href="PDS/index.html"',
'href="Ahmedabad2019/Python.html"',
'href="Ahmedabad2019/index.html"', 'href="Mumbai2019/
index.html"', 'href="Mumbai2020/index.html"',
'href="AhmedabadDataAtScale/index.html"',
'href="COSC1010F2019/index.html"', 'href="COSC1010/
index.html"', 'href="Algorithms/index.html"',
'href="DataAtScale/index.html"']

Case Study: Finding Links
• We cut out the beginning 'html="' and the ending '"'

def get_links(site=Gl.site, file=Gl.file):
 webpage = requests.get('/'.join([site, file])).text
 lista = Gl.regex_links.findall(webpage)
 for element in lista:
 element = element[6:-1]
 print(site+'/'+element)

Case Study: Finding Links
• We could now add all of the resulting websites into a list

• Which we then could crawl, if we wanted to

def get_links(site=Gl.site, file=Gl.file):
 webpage = requests.get('/'.join([site, file])).text
 lista = Gl.regex_links.findall(webpage)
 result = []
 for element in lista:
 element = element[6:-1]
 result.append(site+'/'+element)
 return result

Summary
• If data is published on the web:

• First, see whether the data is available through an API

• Administrators get annoyed if people scrape
unnecessarily

• If data is available only as html data:

• Be careful in making large number of requests.

• This can get you banned / blacklisted

• You might get a complaint from the legal department

• Which is usually not valid unless you exploit for
commercial nature

