Web Scraping

Thomas Schwarz, SJ

Important Preliminaries

e On your own machine:
e |nstall pip3 (the python 3 version)
* You can invoke pip3 also by python3 -m pip
 Then install a number of packages:
e pandas
e sudo python3 -m pip install pandas
e beautifulsoup4
e sudo python3 -m pip install beautifulsoup4

* requests

Scraping and Crawling

e Both involve automatic (‘'bot') access to a web-site

 Crawling tries to find and process all the information on all
pages of the website

* Typically used by search engines
e Scraping

e Used to obtain data contained in certain web-pages

Legal and Ethical Issues

* Web-scrapping is sometimes considered a threat
» Because it creates real problems

* Because it accesses data for use against the business
interests of the web service provider

Legal and Ethical Issues

 Web-scraping can run afoul of:
e Existing and future laws

* |Inthe US:

e Computer Fraud and Abuse Act, Digital Millennium
Copyright Act,

e Terms of Use / Breach of Contract e.g. those in
robots.txt

e Copyright

Legal and Ethical Issues

e robots.txt gives conditions for automatic crawling

 No crawling: User-agent: *
Disallow: /

e All crawling allowed: User—-agent: *
Disallow:

e Block twitbot from crawling the indicated directory

User—-agent: twitbot
Disallow: /mysecrets/

Legal and Ethical Issues

robots.txt

Needs to be called that (not Robots.txt)

Needs to be placed in the top-level of the hierarchy
needs to be publicly available

subdomains will have to use separate robots files

Can be used to provide a sitemap for crawlers (so that
search engines will show your content)

e Sitemap: https://www.mysite.com/sitemap.xml

Legal and Ethical Issues

* Aggressive scraping (and crawling) can become a Denial
of Service Attack

e Server busy to answer scraping demands and cannot
serve other traffic

* robots.txt can specify a desired back-off interval

* |n general: do not access web-pages on a site
without an interval of at least 10 seconds

Legal and Ethical Issues

* Many sites provide APIs in order to allow users to make
bulk-downloads of data

* This usually means they do not want to have their site
scraped, so they offer a simpler alternative

Legal and Ethical Issues

* Raw data is not protected by copy-right

 EXxceptions can arise when scraping is used to obtain the
same functionality as the original site

* Scraping needs to be done at a low level of intensity

 Using an agent that sends identifying information with
each request is useful

e Security pouring over logs can be put at ease with an
explanation

Legal and Ethical Issues

* \Websites are free to ban robots by using a black-list for IP
addresses

e Commercial crawling solutions exists that circumvent
banning

e |Imitate human user behavior
 Use many different IP addresses
* Automatic throttling of requests

e The need and the existence of these automated crawlers
show that:

e Scraping is in a legal and ethical gray-zone

Techniques

 Jo download data from a website and prepare it for
processing

e \We need to access the website

 We need to find the data on the website and put it into
a structure we can use

e Before we code, we need to first understand the source
of the website

e After we obtained the data, we need to store it in a
reasonable format

Understanding Web Sites

 Access the target website
e Use the developer tools or view the source

* Browser dependent

Understanding Web Sites

 Milwaukee police maintains a website with current call
data

e https://itmdapps.milwaukee.gov/MPDCallData/
e Goal is to download this data

e Use the "Show Source Functionality” of your browser
on the website

Understanding Web Sites

<!DOCTYPE HTML>
<html>

<head>
<title>Milwaukee Police Department: Call for Service</title>

<meta http-equiv='X-UA-Compatible' content='IE=edge'>

<meta name='viewport' content='width=device-width, 1nitial-scale=1"'>

<link rel='stylesheet' href='/ItmdScripts/css/redesign.css'
type="'text/css'/>

<link rel='stylesheet' href='/ItmdScripts/css/city-various.css'
type='text/css'/>

<script src='/ItmdScripts/js/jgquery.min.js'></script>

<script src='/ItmdScripts/js/message.js'></script>

<script src='/ItmdScripts/js/mil-default.js'></script>
</head>
<body>

<div id='bg-div'>

<div data-role='page' class='main'>
<div data-role='header' class='redesign—-header'>

<img alt='City of Milwaukee' src='//

Understanding Web Sites

e |dentify the data that we would like to extract
e |n this case, data in a table

<tr style='border-style: none; border-collapse: collapse;'>

<td style='border: 1lpx solid black;
border-collapse: collapse; '>201731019</td>

<td style='border: 1lpx solid black;
border-collapse: collapse; '>06/21/2020 11:54:25 AM</td>

<td style='border: 1lpx solid black;
border-collapse: collapse; '>6000 W SILVER SPRING DR,MKE</td>

<td style='border: 1lpx solid black;
border-collapse: collapse; text—-align: center; '>4</td>

<td style='border: 1lpx solid black;
border-collapse: collapse; '>PATROLL/td>

<td style='border: 1lpx solid black;
border-collapse: collapse; '>Assignment Completed</td>

</tr>

Understanding Websites

 Before we start downloading websites, let's first
understand them

e Each web browser has a way to view the source of a
website

e On Chrome, use Developer -> View Source

 Easiest tool for web development

Accessing web sites

e Selenium: Module for automatic web application tests

o Automatically click links, pretend to be a certain
browser, etc

e Useful when data is accessed after ajax requests

e Needs some downloads

Accessing Website

* Scrapy:
* Framework to run scraping and web crawling

 Developed by web-aggregation and e-commerce
company Mydeco

 Maintained by Scrapinghub

* Interlaced with a commercial offering

Accessing websites

* Requests

 Simple and basic translator for making url requests

® r = requests.get (address)

e Variable r.content now contains the contents of the
web page (as a binary string)

e Variable r.text contains the contents as a string
* Requests will guess the encoding

 But you can set the encoding with

® response.encoding = 'utf-8'

Accessing websites

e Requests

e Can use r.headers to obtain a dictionary-like object
with various header values

e Can use query string in requests:

e Example:

requests.get ('https://api.github.com/search/rep’,
params=[('qg', 'requests+language:python')])

requests.put ('https://httpbin.org/put’,
data={'key':'value'})

Accessing Websites

e Use regular expression (just a little bit)
e Use beautiful soup (html parser)

e Use requests

Regular Expressions

Python

Why

* A frequent programming task is “filtering”
 Retain only those records that fit a certain pattern
e Typical part of big data and analytics applications

e Example for text processing

Why

* Whenever you deal with text processing

* Think about whether you want to use regular
expressions

Why

 Regular Expressions are a theoretical concept that is well
understood

* Many programming languages have a module for regular
expressions

e Usually, very similar syntax and semantics

* We can use ad hoc solutions, but regular expressions are
almost always faster

How

Usually, we want to compile a regular expression
* This allows for faster scanning
e Compilation cost time
e But usually amortized very quickly
Python regular expressions are in module re
e Usep=re.compile('?")

* Where the question mark is the search string

How

* A Python regular expression is a string that defines the
search

 The string is compiled

e After compilation, a match, search, or findall is performed
on all strings

 The output is None if the regular expression is not
matched

 Otherwise, depending on the function, it provides the
parts of the string that match

A first example

In a regular expression, most characters match
themselves

 Unless they are “meta-characters” such as *, \, A

E.G.: Find all lines in “alice.txt” with a double hyphen
Regular expressionis '--"
Read in all lines of the text file, find the ones that match

* Need to use search, because match only matches at
the beginning of a string

A first example

import re

 |mportre
p = re.compile('--") .
e Compile the
def matchl(): | o regular expression
with open("alice.txt") as infile:
line count = 0

for line 1n infile:
line count+=1
line = line.strip ()
1f p.search(line):
print (line count, line) e Match lines

with .search()

Using raw strings

 Araw string is a string preceeded with a letter r:

e print (r'Hello World")

* The difference to a normal string is that the escape
character always means the escape character itself.

e print (r'\tHello') printsout \tHello
e print ("\tHello"') prints out Hello after a tab.

 This can be very useful because we might on occasion
have to escape the escape character several times.

Matching

e Characters are the easiest to match

 Find all words in lawler.txt (a large list of English words) with
a double “o00”

e Just change the expression

o lmport re

p = re.compile('oo"'")
def matchl () :
with open("lawler.txt") as infile:
line count = 0

for line 1n 1nfile:
line count+=1
line = line.strip /()
1f p.search(line) :
print (line count, line)

Matching

e | etters and numbers match themselves
e But are case sensitive

 Punctuation marks often mean something else.

Matching

e Square brackets [| mean that any of the enclosed
characters will do

e Example: [ab] means either 'a' or 'b’
e Square brackets can contain a range

e Example: [0-5] means either 0, 1, 2, 3,4, or 5
e Acaret A means negation

e Example: [*a-d] means neither 'a’, 'b’, 'c’, nor 'd’

Self Test

e Find all lines in a file that have a double 'e'

Self Test Solution

import re
p = re.compile(r'ee')

def match ee(filename) :
with open(filename) as 1infile:
for line 1n infile:
1f p.search(line) :
print (line.strip())

Self Test 2

 Find all lines in a file that have a double-'ee’ followed by a
letter between 'I' (el) and 'n’

Self Test 2 Solution

The only difference is in the regular expressions where

import re
we have now a range of letters.

p = re.compile(r'ee[l-m]")

def match ee(filename) :
with open(filename) as 1nfile:
for line 1n infile:
1f p.search(line):
print (line.strip())

Matching: Wild Cards

e Wild Card Characters

 The simplest wild card character is the period / dot: “.”
* |t matches any single character, but not a new line

e Example: Find all English words using Lawler.txt that
have a patterns of an “a” followed by another letter
followed by “a”

e Solution: Use p = re.compile('a.a')

Matching: Wild Cards

e |f you want to use the literal dot ' . ' you need to escape
it with a backslash

e Example: To match “temp.txt” youcanuse 't...\.txt'

 This matches any file name that starts with a t, has
three characters afterwards, then a period, and then
txt.

Matching: Repetitions

 The asterisks repeats the previous character zero or more
times

e Example: '\.[a-z]*' looks for a period, followed by

any number of small letters, but will also match the simple
string ' .

* The plus sign repeats the previous character one or more
times.

e Example: '"unif[a-z]+y' matches a string that starts

with 'uni’ followed by at least one small letter and
terminating with 'y’

e This is difficult to read, as the + looks like an operation

Matching: Repetitions

 Braces (curly brackets) can be used to specify the exact
number of repetitions

e 'a{1:4}' means one, two, three, or four letters 'a’

e 'a{4:4}' means exactly four letters 'a’

Self Test

e Print all file names in a directory that look like a Python
file.

 Notice that ".py" is not a valid Python file. There must
be something before the dot.

Self Test Solution

def get python(dir name) :
python = re.compile('.+\\.py")
lista = os.listdir (dir name)
for name 1n lista:
1f python.match (name) :
print (name)

Matching

e \w stands for any letter (small or capital) or any digit
e \W stands for anything that is not a letter or a digit

e Example: Matching “n”+non-letter/digit+"t”

"Speak English!" said the Eaglet. "I don't know the meaning of halfé
They were indeed a queer-looking party that assembled on the bank

®p = re.compille ("n\\Wt")

 We need to double escape the backslash using normal
Python strings

e p = re.compile(r’'n\wWt'")
e Or use a “raw string” (with an “r” before the string)

e In araw string, the backslash is always a backslash

Matching

\s means a white space, newline, tab

\S means anything but a white space, newline, or tab
\d matches a digit

\t matches a tab

\r matches a return

Regular Expression
Functions

* Once compiled a regular expression can be used with

® match () matches at the beginning of the string and
returns a match object or None

® search () matches anywhere in the string and returns
a match object or None

® findall () matches anywhere in the string and does
not return a match object

Match Objects

A match object has its own set of methods

group () returns the string matched by the regular
expression

start () returns the starting position of the matched
string

end () returns the ending position

span () returns a tuple containing the (start, end)
positions of a match

Regular Expression Gotcha

 Regular expression matching is greedy

* Prefers to match as much of the string as it possibly
can

e Example:

p3 = re.compile(r'.+\.py")
print (p3.search("This file, hello.py and this file
world.py are python files"))

e Prints out

<re.Match object; span=(0, 42), match='This file,
hello.py and this file world.py'>

Non-Greedy Matching

* We can use the question mark qualifier to obtain a non-
greedy match.

*p = re.compile('o.+?0")

* Finds all non-overlapping, minimal instances

Advanced lopics

* |n this module we only scratched the surface.

* There is excellent online documentation if you need more
information

e But this should be sufficient to do simple tasks such as
data cleaning and web scraping

Webscraping with
BeautifulSoup

Thomas Schwarz, SJ

Beautiful Soup

* Module developed for parsing web-pages

e Current version is called bs4

® from bs4 import BeautifulSoup

Beautiful Soup Installation

e Easy installation with pip

e Just remember that you need to install it for the correct
Python version

HTML in Five Minutes

e HTML is a markup language
e Tags < > are used to delimit elements

e HTML documents start out and end with an <htmi> </
html> tag

* HTML documents consists of two parts:
e Head: <head> </head>
e Body: <body> </body>
* Head: Information on the page

* Body: The page itself

HTML in Five Minutes

Basic html elements:

e Text header <h1></h1>, ... <h6></h6>
e Paragraphs <p></p>

* Links <a> anchors

e Images <im> </im>

e Lists

e Dividers <div>

e Spans

HTML in Five Minutes

e (Often, tags have metadata embedded.

e Example:

® <3 href="https://tschwarz.mscs.mu.edu">Schwarz

 Alink with a property href set

 An ordered list using capital letters as numbers

¢ <ol type = "A">

Beautiful Soup Parser

e Start out by creating a Beautiful Soup object
* Need to have a parser attached
e Standard is the html parser

import requests
from bs4 import BeautifulSoup

r = requests.get (url)
soup = BeautifulSoup (r.content, 'html.parser')

Beautiful Soup Parser

 \We can use prettify() in order to find print out the
contents of the beautiful soup obejct.

e Step 1: Import the modules

from bs4 import BeautifulSoup
from requests import get

e Step 2: Scrape

def scrape() :
return get ('https://tschwarz.mscs.mu.edu')

e Step 3: Display the contents

def display () :

soup = BeautifulSoup (scrape () .content,
features = 'html.parser')
print (soup.prettify())

Beautiful Soup Parser

* The 'html.parser' comes with Python
e There are a number of other parsers that can be installed

e See the BeautifulSoup/bs4 documentation

BeautifulSoup Objects

 An html tag defines an html element
 \We can access tag elements from within BeautifulSoup

* The first tag element can be accessed just by using the
tag

e Example: Getting the first li tag on my website:

import requests
from bs4 import BeautifulSoup

soup = BeautifulSoup(ts.content, 'html.parser')
print (soup.1l1)

Beautiful Soup Objects

e HTML tags have names

e <a> (anchor) tag has name a

* <p> (paragraph) tag has name p
e HTML tags have attributes

e class, id, style, ...

Beautiful Soup Objects

* Getting the name of a tag:

import requests
from bs4 import BeautifulSoup

soup = BeautifulSoup (ts.content, 'html.parser')
11 tag = soup.l1
print (1li tag.name) # prints out 11

* We could actually change the name of a tag and thereby
beautiful soup parse tree

Beautiful Soup Objects

* (Getting attributes of a tag
* |In the example, the li - tag has an anchor inside.
 We can get to the anchor

 The attributes are in a dictionary

Beautiful Soup Objects

Example print (11 tag.a)

Prints out

<a class="tab active" href="index.html"

target=" self">Home

Attributes are in a dictionary:

>>> print (11 tag.a.attrs)
{'class': ['tab active'], 'href':
'target': ' self'}

and accessible directly

>>> print (li1 tag.a['class'])
['tab active']

'Index.html',

Beautiful Soup Objects

 Jo get to the text in a tag, use .string

>>> print (11 tag.a.string)
Home

Searches in Beautiful Soup

e To search within a BeatifulSoup object, we can use
e find
* Only finds first occurrence
e find_all

e Returns a list of occurrences

Searches in Beautiful Soup

 Find can use
e atag, e.g. an anchor
soup.find('a'") soup.find(name = 'a')
e a text string or a regular expression

e Careful: You are looking for the exact string.

>>> mke = soup.find(text = re.compile('Milwaukee'))
>>> mke

'Milwaukee Police Department: Call for Service'

>>> mke = soup.find(text = 'Milwaukee')

>>> print (mke)
None

Searches in Beautiful Soup

 Find can use attributes of tags

 Generic: Use attrs parameter with a dictionary

>>> footer = soup.find(attrs={'class' : "footer"})

>>> footer

<div class="footer" data-role="footer">Mayor Tom Barrett</
a></1li><1li><a href="http://city.milwaukee.gov/
CommonCouncil">Common Council<1li><a

Searches in Beautiful Soup

e (Can use find with a function

e Function is boolean, i.e. returns True or False

Searches in Beautiful Soup

e find_all works like find, but returns a list of results

e |n addition, 1imit=n limits the list to the first results

Case Study: MPD

e Go to https://itmdapps.milwaukee.gov/MPDCallData/ and
save the file

* We do not want to upset the police

Case Study: MPD

* First, we use beautiful soup to show us the file:

def prob3():
with open('mpd.html') as mpd:
soup = BeautifulSoup (mpd, 'html.parser')
print (soup.prettify())

e This is just a nicer version of the html file

* The call data is in a single table

Case Study: MPD

e Now let's find all tables: Look for tr

def prob4d () :
with open('mpd.html') as mpd:

soup = BeautifulSoup (mpd, 'html.parser')

results = soup.find all('tr')

for 1tem 1n results:
print('an item:"')
print (1tem)
print ()

Case Study: MPD

* This gives us lots of tables, some belonging to navigation
and some belonging to what we are looking for

an item:

<tr style="border-style:
<td style="border:
<td style="border:
<td style="border:
<td style="border:
<td style="border:
<td style="border:

</tr>

lpx
lpx
lpx
lpx
lpx
lpx

solid
solid
solid
solid
solid
solid

noney,

black;
black;
black;
black;
black;
black;

border-collapse:
border-collapse:
border-collapse:
border-collapse:
border-collapse:
border-collapse:
border-collapse:

collapse; ">

collapse;">201731676</td>
collapse;">06/21/2020 04:56:37 PM</td>
collapse;">2423 S 6TH ST,MKE</td>
collapse; text-align: center;">2</td>
collapse;">TRBL W/SUBJ</td>

collapse; ">Advised</td>

 The good stuff is the third item Iin the list

Case Study: MPD

e First, let's restrict ourselves to the good stuff

def probbd () :
with open('mpd.html') as mpd:
soup = BeautifulSoup (mpd, 'html.parser')
results = soup.find all('tr')[2:] +#use slicing
return results

Case Study: MPD

 Then inside these results, let's look for the columns (td)

def probo6 () :
with open('mpd.html') as mpd:
soup = BeautifulSoup (mpd, 'html.parser')
results = soup.find all('tr') [1:]
for r 1n results:
print ('\n")
for e in r.find all('td'):
print (e)

Case Study: MPD

* Now we can take out the contents
e Strategy:
 For each row create a dictionary

e Use

from dateutil.parser 1mport parse

 to parse the date time

Case Study: MPD

def prob’7 () :
findall = []
with open('mpd.html') as mpd:
soup = BeautifulSoup (mpd, 'html.parser')
results = soup.find all('tr') [2:]
for r 1n results:

entries = [e.contents[0] for e 1in
r.find all('td")]

datetime = parse(entries[1l])

dicti = { '"i1d': entries|0],
'datetime': datetime,
'address': entries|[2],
'district': entries|[3],
'descr': entries[4],
'status': entries|[5]}

findall.append(dicti)
return findall

Case Study: MPD

* Finally, can create a data frame

data

>>> data.head /()

> W DD PO

1d
201731692
201731630
201731573
201731601
201731683

2020-06-21
2020-06-21
2020-06-21
2020-06-21
2020-006-21

pd.DataFrame (prob7/ ())

datetime

17

17:
17:

17

: 04
03:
03:
:02
17:

02

: 39

42
09

: 20
:05

descr

TRAFFIC HAZARD
ACC PDO

FAMILY TROUBLE
THREAT

ACC PI

status

Assignment Completed
Service 1n Progress
Advised

Service 1n Progress
Service 1n Progress

Case Study: Finding Links

 |et's use request in order to do some web-navigation
e TJarget is my web-site:
e https://tschwarz.mscs.mu.edu/Classes/

* We just beat up on this one

Case Study: Finding Links

* First step:
e Store addresses in global constant

e Use the class Gl trick

class Gl:
site = 'https://tschwarz.mscs.mu.edu/Classes'
file = 'classes.html'
regex headers = re.compile(r'<h.>.*?</h.>")
regex links = re.compile (r'href=".*2"")

regex div = re.complle(r'<div.*?>")

Case Study: Finding Links

e Second step:

* Download the page

def get links(site=Gl.site, file=Gl.file):
webpage = requests.get('/'.join([site, file])) .text

Case Study: Finding Links

* Third step:
e Find all links

e Links use the construct

class Gl:
regex links = re.compile (r'href=".*?"")

Case Study: Finding Links

* Third step:
e This will give us exactly the links as a list
["href="../style.css"', 'href="../style extra.css"',
'href="../index.html"', 'href="../cv.html"',

'href="publications.html"', 'href="classes.html"',
'href="PDS/index.html"', 'href="Algo2020/index.html""',
'href="AlgoF2020/index.html"', 'href="PDS/index.html"'
'href="Ahmedabad2019/Python.html""',
'href="Ahmedabad?2019/index.html""', 'href="Mumbai?2019/
index.html"', '"href="Mumbai?2020/index.html"’,
'href="AhmedabadDatalAtScale/index.html""',
'href="C0OSC1010F2019/index.html"', 'href="COSC1010/
index.html"', 'href="Algorithms/index.html"',
'href="DataAtScale/index.html""']

Case Study: Finding Links

e We cut out the beginning 'htm1=""and the ending """

def get links(site=Gl.site, file=Gl.f1ile):
webpage = requests.get('/'.join([site, file])) .text
lista = Gl.regex links.findall (webpage)
for element 1in lista:
element = element|[6:-1]

print (site+'/'"+element)

Case Study: Finding Links

 We could now add all of the resulting websites into a list
e Which we then could crawl, if we wanted to

def get links(site=Gl.site, file=Gl.f1ile):

webpage = requests.get('/'.join([site, file])) .text
lista = Gl.regex links.findall (webpage)
result = []
for element 1n lista:
element = element[6:-1]

result.append(site+'/"+element)
return result

Summary

* |f data is published on the web:
* First, see whether the data is available through an API

 Administrators get annoyed if people scrape
unnecessarily

* |f data is available only as html data:
* Be careful in making large number of requests.
* This can get you banned / blacklisted
* You might get a complaint from the legal department

* Which is usually not valid unless you exploit for
commercial nature

