
String Formatting

• A simple way to format is the use of f-strings
• A string preceded with an f-character
• Can put variables into braces { }
• Example

Formatting Strings

f'This is pi: {math.pi}'

• We really need to learn how to format strings
• Python has made several attempts before settling

on an efficient syntax.
• You can find information on the previous solutions

on the net.
• Use the format function

• Distinguish between the blueprint
• and the string to be formatted
• Result is the formatted string.

Formatting Strings

• Blueprint string
• Uses {} to denote places for variables
• Simple example

• "{} {}".format('one', ‘two')

• Result

Blueprint
Calling
format

String to be
formatted

‘one two’

Formatting Strings

• Inside the brackets, we can put indices to select
variables
• 0 means first variable, 1 second, …
• Can reuse variables

Formatting Strings

• Additional formatting inside the bracket after a
colon

• Can assign the number of characters to print out

• Default alignment is to the left

Formatting Strings

• Use ^ to center
• Use < to left-align
• Use > to right-align

Formatting Strings

• Numbers are handled without specifying format
instructions.

• Or we can insist on special types
• Use s for string
• Use d for decimal
• Use f for floating point
• Use e for floating point in exponential notation

Formatting Strings

Formatting Strings
• By specifying “f” we ask for floating point format

• By specifying “e” we ask for scientific format

• Padding
• If the variable needs more space to print out, it

will be provided automatically

• This is actually the longest officially recognized
word in English

Formatting Strings

• Padding:
• On the reverse, we can give the number of

significant digits after a period

• We only want to keep two decimal digits after the
period

• But use a total of 8 spaces for the number.

Formatting Strings

• Escaping curly brackets:
• If we want to write strings with format containing

the curly brackets “{“ and “}”, we just have to
write “{{“ and “}}”

• A single bracket is a placeholder, a double curly
bracket is a single one in the resulting string.

Formatting Strings

Files

Opening and Reading Text
Files

• Python follows the posix conventions:

• You can open a file

• You can interact with a file

• You then close the file

• Easiest done with a Python context

• The context automatically closes the file after use
with open(filename) as infile:
 |— statement block —|

Opening and Reading Text
Files

• To read from a file, we can use a for loop

• Within the for loop, we can use strip() in order to
break the line apart at white spaces

with open(filename) as infile:
 for line in infile:
 |— do something with each line

with open(filename) as infile:
 for line in infile:
 for words in line.split()

Standard Example
• Use a text file from project Gutenberg

• Gutenberg is a good source of free books, but on
occasion, German characters force you to use special
encodings

• Read the text line for line

• Count the number of lines and the number of symbols in
a line. with open('alice.txt') as inputfile:

 count_symbols = 0
 count_lines = 0
 for line in inputfile:
 count_symbols += len(line)
 count_lines += 1
print(count_symbols, count_lines)

Standard Example
with open('alice.txt') as inputfile:
 count_symbols = 0
 count_lines = 0
 for line in inputfile:
 count_symbols += len(line)
 count_lines += 1
print(count_symbols, count_lines)

8pen file in default
mode: text, read, utf8

Standard Example
with open('alice.txt') as inputfile:
 count_symbols = 0
 count_lines = 0
 for line in inputfile:
 count_symbols += len(line)
 count_lines += 1
print(count_symbols, count_lines)

File is open in this
part of code

Standard Example
with open('alice.txt') as inputfile:
 count_symbols = 0
 count_lines = 0
 for line in inputfile:
 count_symbols += len(line)
 count_lines += 1
print(count_symbols, count_lines)

reading the text line
for line

Standard Example
with open('alice.txt') as inputfile:
 count_symbols = 0
 count_lines = 0
 for line in inputfile:
 count_symbols += len(line)
 count_lines += 1
print(count_symbols, count_lines)

counting

Dictionaries
Thomas Schwarz, SJ

Dictionaries
• Python has a efficient association data structure — the

dictionary

• Dictionary pairs keys with values

• Useful for: indices

• Useful for: translations

• Useful for: quick lookups

• E.g.: first letters —> full email address

• E.g.: human-readable URL —> IP address

• …

Dictionaries
• Dictionaries are key-value stores

• Keys — anything, but needs to be immutable

• Remember: Lists are mutable, strings are immutable

• Value — anything

Dictionaries
• Dictionaries are created by using curly brackets

• Can use lists

dicc = {1: ‘uno’, 2: ‘dos’, 3: ‘tres’}

• Or can use assignment

 dicc = {}

 dicc[1] = “uno”

 dicc[2] = “dos”

 dicc[3] = “tres”

• Values are assigned / retrieved using the bracket notation

Dictionary
• Dictionary dicc={}

• Accessing values:

dicc['key']

• With default value

dicc.get(key, default_value)

• Or with if - else

if key in dicc:

• Creating / changing values

 dicc['key'] = value

Dictionary
• Deleting from a dictionary

dicc = {}

• Use the del keyword

• Raises a key error if the key is not in the dictionary

if key in dicc:

 del dicc[key]

• Use the pop method, which returns the value

value = dicc.pop(key)

value = dicc.pop(key, default)

Dictionary
• Checking for existence

• Use the “in” keyword

Dictionaries
• A simple program that “learns” Spanish words

def test():
 dicc = {}
 while True:
 astr = input("Enter an English word: ")
 if astr == "Stop it":
 return
 elif astr in dicc:
 print(dicc[astr])
 else:
 print("I have not yet learned this word")
 val = input("Please enter the Spanish word: ")
 dicc[astr] = val

Dictionaries
• Dictionaries have an internal structure

• You will learn in Data Structures how to build dictionaries
yourselves

• For the moment, enjoy their power

• You can print dictionaries

• You will notice that they change structure after inserts and
not reflect the order in which you inserted elements

• This is because they optimize access

Dictionaries
• Deleting all entries in a dictionary

• use the clear() method

• Deleting an entry without fear of creating a key error

• Use an if statement

• Use pop with a second argument None

• dicc.pop(1, None)

Dictionaries
• Looping over keys

• Simplest:

• for number in dicc:

• iterkeys() or iter works the same way

• for number in dicc.iterkeys():

• for number in iter(dicc):

Some Uses of Dictionaries
• Dictionaries can be used to count things.

• Example: Count the number of letters in a file.

• We open the file with encoding latin-1 so that there
are no encoding errors

alphabet = "abcdefghijklmnopqrstuvwxyz"

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 for letter in alphabet:
 dicc[letter]=0

Some Uses of Dictionaries

• Create and initialize a dictionary

• We are only interested in letters

alphabet = "abcdefghijklmnopqrstuvwxyz"

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 for letter in alphabet:
 dicc[letter]=0

Some Uses of Dictionaries
• Read the file line by line.

• Read each letter in the line

• After changing to lower case, update dictionary

alphabet = "abcdefghijklmnopqrstuvwxyz"

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 for letter in alphabet:
 dicc[letter]=0
 for line in infile:
 for letter in line:
 letter=letter.lower()
 if letter in alphabet:
 dicc[letter]+=1

Some Uses of Dictionaries
• Now process the dictionary

• Calculate the sum of values (i.e. the counts)

• Pretty-print the results

for letter in alphabet:
 cum += dicc[letter]
for letter in alphabet:
 print("{:1s} {:5d} {:5.2f}%”.format(
 letter, dicc[letter], dicc[letter]/cum*100))

Some Uses of Dictionaries
• Using lists as dictionary values

• in order to create an index of words in a file

Some Uses of Dictionaries
• Open file with encoding “latin-1”

• Read file line by line

• Break line into words

• Normalize words by stripping and lowering

with open("alice.txt", encoding = "latin-1") as infile:
 index = {}
 word_count = 0
 for line in infile:
 for word in line.split():
 word_count += 1
 word = word.lower().strip(",.;:?![]-'\"")

Some Uses of Dictionaries
• Add word to dictionary if long enough

with open("alice.txt", encoding = "latin-1") as infile:
 index = {}
 word_count = 0
 for line in infile:
 for word in line.split():
 word_count += 1
 word = word.lower().strip(",.;:?![]-'\"")
 if len(word)>7:
 if word in index:
 index[word].append(word_count)
 else:
 index[word] = [word_count]

Some Uses of Dictionaries
• Print out results if word is frequent enough

for word in index:
 if len(index[word])>2:
 print(word, index[word])

A Teaser on Iterators
• Iterators are the hidden engine of many Python features

• Iterators are almost like lists

• You always can get the next element

• Unless you are at the end of a list

• But they are not lists:

• All the elements in the list have to be there before the list can
be used

• They need to be stored in memory

• Which uses up space

• And can be disastrous if there are just too many

A Teaser on Iterators
• Iterators are only created when there is a need

• Iterators are often hidden from view

• But we will have to use them

• For our purposes:

• We can make them explicitly into lists because we
are just not working with millions of data items

• But hopefully, once we get to play with the grown-
ups …

• Seriously, we get back to iterators

Multi-Dictionaries
• Problem:

• Instead of associating one value with a key, we want to
associate several values:

• a “multi-dictionary”

• Solution:

• The values of the dictionaries should be lists (or sets —
coming week)

Multi-Dictionaries
• Example:

• We want to pass through a file and create an index of
important words with their occurrences

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 word_number = 0
 for line in infile:
 for word in line.split():
 word = word.strip(":,.?![]'")
 word = word.lower()

 word_number +=1
 if len(word)>8:
 if word in dicc:
 dicc[word].append(word_number)
 else:
 dicc[word]=[word_number]

Calculating on Values
• Assume you have a dictionary with numerical values

• For example: a dictionary with the prices of stocks on
September 15, 2018

• You want the average, the maximum, the minimum …
price

dstocks = {“tata”: 2063.30,
 “hdfc”: 2029.20,
 “hiul”: 1630.15,
 …

}

Solution
• You can access the values of a dictionary through the

values method.

• values() returns an iterator of all the values in the
dictionary

Calculating with keys
• Problem:

• You want to calculate on the keys of a dictionary

• Solution:

• The keys() method returns an iterator of the keys of a
dictionary

Finding the most common
item in a list

• We use a dictionary as a counter.

• First way: We can do so by ourselves.

• Create a dictionary

• Pass through the list

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1

get specifies a
default value,

it is otherwise equivalent to
counter[x]

Finding the most common
item in a list

• If we do not want to use get, we can just check whether
the list-item is already in the dictionary

def most_frequent(lista):
 counter = {}
 for x in lista:
 if x in counter:
 counter[x]+=1
 else:
 counter[x]=1

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

highest_seen contains the
highest encountered value

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

highest_seen is adjusted
whenever we see a higher

value in the counter

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

but we also need to
remember the key,

which we record in best_key

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

because the key with the
highest counter value is the

result that we return

Finding the most common
item in a list

• But we can also use the work of others

• The Counter in the collections module

• You create a new object of type Counter

from collections import Counter

def most_frequent(lista):
 ctr = Counter()

Defines a new
object called ctr

ctr is an object of
type Counter

Finding the most common
item in a list

• Counters are (updated) like dictionaries

• But they have a default value of 0

from collections import Counter

def most_frequent(lista):
 ctr = Counter()
 for item in lista:
 ctr[item] += 1

Here we add 1 to
the value of
ctr[item]

No need to initialize!

Finding the most common
item in a list

• Counters have a method called most_common

• Argument is the number of most common items

• Returns a list of pairs

from collections import Counter

def most_frequent(lista):
 ctr = Counter()
 for item in lista:
 ctr[item] += 1
 return ctr.most_common(1)[0][0]

• Get a list of one
elements.

• Get the first (and
only) element of the
list

• Get the first
coordinate of that
element

Memoization
• (Some) Computer Scientists love recursion

• A function calls itself

• This is super-elegant and the more mathematically
inclined pine for this elegance

• But it is not necessarily very fast

• The more engineeringly inclined think its a waste

Recursion
• When it works

• Factorials

• The factorial of n is n (n-1) (n-2) (n-3) … (4) (3) (2) (1)

• Define it to be one for negative or zero n

Recursion
• This implementation has the function factorial call itself

def factorial(number):
 if number<1:
 return 1
 else:
 return number*factorial(number-1)

• Here we are calling on the function itself

• Will call factorial(number-1), which will call
factorial(number-2), which will call factorial(number
-3) … until we call factorial on 1, in which case the
recursion stops.

Recursion
• This implementation has the function factorial call itself

def factorial(number):
 if number<1:
 return 1
 else:
 return number*factorial(number-1)

• The base case:

• We cannot call recursion infinitely often, so we
need one.

Recursion
• The Fibonacci numbers

• The Fibonacci numbers are defined recursively

• f0 = 0, f1 = 1, fn = fn−1 + fn−2

def fibonacci(number):
 if number <= 0:
 return 0
 if number == 1:
 return 1
 return fibonacci(number-1)+fibonacci(number-2)

Recursion
• But this implementation is inane!

• Takes too long even for small numbers.

• We can use the time-module in order to obtain the
cpu-time

• We do so once before and after execution of the
function

• This yields approximately the time it takes to execute
the function

Recursion
• We just write a function that measures the time

def measure(function, number):
 start = time.time()
 function(number)
 print(number, time.time()-start)

Recursion
• Now we try it out with factorial and fibonacci

• Not a problem with factorial
27 1.52587890625e-05
28 1.5974044799804688e-05
29 1.52587890625e-05
30 1.5735626220703125e-05
31 1.811981201171875e-05
32 1.71661376953125e-05
33 1.7881393432617188e-05
34 1.7881393432617188e-05
35 1.9073486328125e-05
36 1.9788742065429688e-05
37 1.8835067749023438e-05
38 2.09808349609375e-05
39 2.193450927734375e-05

Recursion
• But disastrous for Fibonacci

• It takes 34 seconds in order to calculate fibonacci(39).
28 0.17530512809753418
29 0.27112603187561035
30 0.43769311904907227
31 0.7113552093505859
32 1.1374599933624268
33 1.846013069152832
34 2.9945621490478516
35 4.856478929519653
36 7.85633397102356
37 12.681456804275513
38 20.59703803062439
39 33.98105502128601

Recursion
• What is the problem?

• Look at what happens if we calculate fibonacci(9).

• We calculate fibonacci(8) and fibonacci(7)

• Since the first one also calculates fibonacci(7), we
calculate fibonacci(7) twice.

• And it gets worse for fibonacci(6), fibonacci(5), …

fibonacci(8)

fibonacci(7)

fibonacci(6)fibonacci(6)

fibonacci(5) fibonacci(5)fibonacci(5)

fibonacci(4) fibonacci(4)fibonacci(4) fibonacci(4) fibonacci(4)

fibonacci(3)fibonacci(3) fibonacci(3)

Memoization
• A simple trick to speed up recursive functions is to

remember values that we have already calculated.

• Create a dictionary (possibly global) that stores values
already calculated

• Before any calculation check whether the desired value
is in the dictionary

• If we calculate something, we put the value into the
dictionary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

• Defining the dictionary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50) • Check whether value

is in the dictionary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50) • Calculation is

necessary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

• But we store the result
in the dictionary in
case we use it in the
future

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

• And now we measure

Decorators
• Python uses decorators to allow changing functions

• A decorator is implemented by:

• Creating a function of a function that returns the
amended function

Decorators

def timeit(function):
 def clocked(*args):
 start_time = time.perf_counter()
 result = function(*args)
 duration = (time.perf_counter() - start_time)
 name = function.__name__
 arg_string = ', '.join(repr(arg) for arg in args)
 print('Function {} with arguments {} ran
 in {} seconds'.format(
 name, arg_string, duration))
 return result
 return clocked

Decorators
• Decorator takes a function with positional arguments as

function

• Decorator defines a new version of the argument function

• And returns it.

Decorators

def timeit(function):
 def clocked(*args):
 start_time = time.perf_counter()
 result = function(*args)
 duration = (time.perf_counter() - start_time)
 name = function.__name__
 arg_string = ', '.join(repr(arg) for arg in args)
 print('Function {} with arguments {} ran
 in {} seconds'.format(
 name, arg_string, duration))
 return result
 return clocked

Decorators
• To use a decorator, just put its name on top of the

function definition

• Decorator generator is executed when module is
imported (or generator is defined)

• When decorated function is defined, the modified
version is created

Decorators

@timeit
def fibonacci(n):
 if n == 0:
 return 0
 if n == 1:
 return 1
 else:
 return fibonacci(n-1)+fibonacci(n-2)

Decorators
• If we execute this function, we get to see how often

fibonacci is called on arguments already executed
>>> fibonacci(10)
Function fibonacci with arguments 1 ran in 5.140000070014139e-07 seconds
Function fibonacci with arguments 0 ran in 1.0870000011209413e-06 seconds
Function fibonacci with arguments 2 ran in 0.1692790839999958 seconds
Function fibonacci with arguments 1 ran in 1.2330000060956081e-06 seconds
Function fibonacci with arguments 3 ran in 0.2676633440000131 seconds
Function fibonacci with arguments 1 ran in 9.8000001003129e-07 seconds
Function fibonacci with arguments 0 ran in 1.0470000120221812e-06 seconds
Function fibonacci with arguments 2 ran in 0.09880945999999824 seconds
Function fibonacci with arguments 4 ran in 0.4692909440000079 seconds
Function fibonacci with arguments 1 ran in 6.51999997103303e-07 seconds
Function fibonacci with arguments 0 ran in 1.0500000087176886e-06 seconds
Function fibonacci with arguments 2 ran in 0.11281222700000626 seconds
Function fibonacci with arguments 1 ran in 1.958000012791672e-06 seconds
Function fibonacci with arguments 3 ran in 0.21685028000000273 seconds
Function fibonacci with arguments 5 ran in 0.7868284680000102 seconds
Function fibonacci with arguments 1 ran in 5.6999999742402e-07 seconds
Function fibonacci with arguments 0 ran in 1.0729999928571488e-06 seconds
Function fibonacci with arguments 2 ran in 0.11366798399998856 seconds
Function fibonacci with arguments 1 ran in 1.2930000110600304e-06 seconds
Function fibonacci with arguments 3 ran in 0.2176230820000029 seconds
Function fibonacci with arguments 1 ran in 5.839999914769578e-07 seconds

Memoization with lru_cache
• We can define our own memoization decorator

• But Python has one that uses an LRU cache

• Memoization is LRU cache with an infinite cache size

• Import from functools lru_cache

@functools.lru_cache
def fib(n):
 if n <= 1:
 return n
 else:
 return fib(n-1)+fib(n-2)

Sets and Frozen-Sets

Python Sets
• Python also has a set structure

• Python optimizes membership queries

• Sets are unordered and do not contain duplicate
elements

Python Sets
• Define a set by using curly braces

•

• Caution: { } is an empty dictionary, use

• empty = set()

my_set = {'apple', 'orange', 'banana'}

Python Sets
• Set operations:

• Use add to place elements into the set

• Adding the same element twice does not change the
set

>>> my_set.add('a')
>>> my_set.add('b')
>>> my_set.add('a')
>>> print(my_set)
{'a', 'b'}

Python Sets
• Set operations:

• To remove an element, use remove

• Which fails if the parameter is not in the set

>>> my_set.remove('a')
>>> print(my_set)
{'b'}
>>> my_set.remove('a')
Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 my_set.remove('a')
KeyError: 'a'

Python Sets
• Set operations:

• Set operations union, intersection, difference are
defined

• Equality operations are defined

• set_1 < set_2 means proper subset

Python Sets
• Set operations:

s1 | s2 union
s1 & s2 intersection
s1 - s2 set difference

s1 ^ s2 symmetric difference

Python Sets
• Best use: remove doublettes from list

• Convert the list into a set, then convert back

>>> lista = [1, 2, 3, 4, 2, 1, 5, 1, 7]
>>> listb = list(set(lista))
>>> listb
[1, 2, 3, 4, 5, 7]

Python Sets
• Sets are mutable

• If you need a set as an index, use a frozenset

• You cannot change a frozenset (other than
reassigning another set to it)

• The constructor will take an iterable

• You can still use operations on a frozenset such as
intersection

fs = frozenset([1,2,3])

>>> fs = frozenset([1,2,3])
>>> ft = frozenset([1, 'one', 1.0])
>>> fs & ft
frozenset({1})

